Виды трапеций признаки равнобокой трапеции

Содержание
  1. Свойства равнобедренной (равнобокой) трапеции
  2. Свойство 1
  3. Свойство 2
  4. Свойство 3
  5. Свойство 4
  6. Свойство 5
  7. Свойство 6
  8. Свойство 7
  9. Определение трапеции. Виды трапеции. Свойства равнобедренной трапеции.
  10. Равнобедренная трапеция. Формулы, признаки и свойства равнобедренной трапеции
  11. Признаки равнобедренной трапеции
  12. Основные свойства равнобедренной трапеции
  13. Стороны равнобедренной трапеции
  14. Формулы длин сторон равнобедренной трапеции:
  15. Средняя линия равнобедренной трапеции
  16. Формулы длины средней линии равнобедренной трапеции:
  17. Высота равнобедренной трапеции
  18. Формулы определения длины высоты равнобедренной трапеции:
  19. Диагонали равнобедренной трапеции
  20. Формулы длины диагоналей равнобедренной трапеции:
  21. Площадь равнобедренной трапеции
  22. Формулы площади равнобедренной трапеции:
  23. Окружность описанная вокруг трапеции
  24. Формула определения радиуса описанной вокруг трапеции окружности:
  25. Что такое трапеция: определение, виды, свойства
  26. Определение трапеции
  27. Виды трапеций
  28. Равнобедренная трапеция
  29. Прямоугольная трапеция
  30. Разносторонняя трапеция
  31. Свойства трапеции
  32. Свойство 1
  33. Свойство 2
  34. Свойство 3
  35. Свойство 4
  36. Свойство 5
  37. Свойство 6
  38. Свойство 7
  39. Свойство 8
  40. Определение, признаки и элементы трапеции
  41. Свойства равнобедренной трапеции
  42. Периметр равнобедренной трапеции
  43. Как найти стороны трапеции?
  44. Средняя линия
  45. Высота трапеции
  46. Диагональ трапеции
  47. Площадь равнобедренной трапеции
  48. Вписанная и описанные окружности

Свойства равнобедренной (равнобокой) трапеции

В данной публикации мы рассмотрим определение и основные свойства равнобедренной трапеции.

Напомним, трапеция называется равнобедренной (или равнобокой), если ее боковые стороны равны, т.е. AB = CD.

Свойство 1

Углы при любом из оснований равнобедренной трапеции равны.

Свойство 2

Сумма противоположных углов трапеции равняется 180°.

Для рисунка выше: α + β = 180°.

Свойство 3

Диагонали равнобедренной трапеции имеют одинаковую длину.

Свойство 4

Высота равнобедренной трапеции BE, опущенная на основание большей длины AD, делит его на два отрезка: первый равняется половине суммы оснований, второй – половине их разности.

Свойство 5

Отрезок MN, соединяющий середины оснований равнобокой трапеции, перпендикулярен этим основаниям.

Прямая, проходящая через середины оснований равнобедренной трапеции, называется ее осью симметрии.

Свойство 6

Вокруг любой равнобедренной трапеции можно описать окружность.

Свойство 7

Если сумма оснований равнобокой трапеции равно удвоенной длине ее боковой стороны, в нее можно вписать окружность.

Радиус такой окружности равняется половине высоты трапеции, т.е. R = h/2.

Примечание: остальные свойства, которые применимы ко всем видам трапеций, приведены в нашей публикации – “Что такое трапеция: определение, виды, свойства”.

Источник

Определение трапеции. Виды трапеции. Свойства равнобедренной трапеции.

Трапеция –четырёхугольник, у которого две стороны параллельны, а две другие стороны не параллельны

Виды трапеции: равнобедренная и прямоугольная

Первое свойство равнобедренной трапеции – у равнобедренной трапеции боковые стороны равны

Второе свойство равнобедренной трапеции – у равнобедренно трапеции углы при основании равны

Определение прямоугольника. Свойство прямоугольника. Признак прямоугольника.

Прямоугольник –параллелограмм, у которого все углы прямые

Свойство прямоугольника – диагонали прямоугольника равны

Признак прямоугольника – если в параллелограмме диагонали равны, то этот параллелограмм – прямоугольник

Определение ромба. Свойство ромба.

Ромб –параллелограмм, у которого все стороны равны

Свойство ромба – диагонали ромба взаимно перпендикулярны и делят его углы пополам

Определение квадрата. Свойства квадрата.

Квадрат –прямоугольник, у которого все стороны равны

Первое свойство квадрата – все углы квадрата прямые

Второе свойство квадрата – диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы квадрата пополам

Понятие площади многоугольника. Единица измерения площадей. Свойства площадей. Площадь квадрата.

Площадь многоугольника –это величина той части плоскости, которую занимает многоугольник

Единицы измерения площадей: квадратный сантиметр (см 2 ), квадратный метр (м 2 ), квадратный миллиметр (мм 2 ) и т. д.

Первое свойство площади – равные многоугольники имеют равные площади

Второе свойство площади – если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников

Читайте также:  Признаки проявления лямблий у детей

Площадь квадрата – площадь квадрата равна квадрату его стороны (S=a 2 )

Определение высоты параллелограмма. Площадь параллелограмма.

Высота параллелограмма –перпендикуляр, проведённый из любой точки противоположной стороны к прямой, содержащей основание

Площадь параллелограмма –

произведение основания на высоту

произведение сторон на синус угла между ними

полупроизведение диагоналей на синус угла между ними

Определение высоты трапеции. Площадь трапеции.

Высота трапеции –перпендикуляр, проведённый из любой точки одного из оснований к прямой, содержащей другое основание. Площадь трапеции –площадь трапеции равна произведению полусуммы её оснований на высоту S= h

произведение средней линии на высоту

полупроизведение диагоналей на синус угла между ними

Площадь ромба (через диагонали). Площадь прямоугольника.

Площадь ромба –площадь ромба равна половине произведений его диагоналей

Площадь прямоугольника – площадь прямоугольника равна произведению его смежных сторон S=ab

Теорема Пифагора и обратная ей.

Теорема Пифагора –в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов

c 2 = a 2 + b 2

Теорема, обратная теореме Пифагора – если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный

Площадь прямоугольного треугольника. Теорема об отношениях площадей треугольников: с равными высотами; имеющих по равному углу.

Площадь прямоугольного треугольника –площадь прямоугольного треугольника равна половине произведения его катетов

Теорема об отношениях площадей треугольников имеющих по равному углу –если угол одного треугольника равен углу другого, то площади треугольников относятся как произведение сторон, заключающих равные углы

Теорема об отношениях площадей треугольников с равными высотами –если площади двух треугольников равны, то их площади относятся как основания

Определение подобных треугольников. Теоремы об отношениях периметров и площадей подобных треугольников.

Подобные треугольники –два треугольника, углы которых соответственно равны, а стороны одного треугольника пропорциональны сходственным сторонам другого

Теорема об отношении площади подобных треугольников – отношение площадей подобных треугольников равно квадрату коэффициента подобия

Источник

Равнобедренная трапеция. Формулы, признаки и свойства равнобедренной трапеции

Признаки равнобедренной трапеции

∠ABC = ∠BCD и ∠BAD = ∠ADC

∠ABD = ∠ACD, ∠DBC = ∠ACB, ∠CAD = ∠ADB, ∠BAC = ∠BDC

∠ABC + ∠ADC = 180° и ∠BAD + ∠BCD = 180°

Основные свойства равнобедренной трапеции

∠ABC + ∠BAD = 180° и ∠ADC + ∠BCD = 180°

AC 2 + BD 2 = AB 2 + CD 2 + 2BC · AD

Стороны равнобедренной трапеции

Формулы длин сторон равнобедренной трапеции:

a = b + 2 h ctg α = b + 2 c cos α

3. Формулы длины основ через площадь, высоту и другую основу:

a = 2S — b b = 2S — a
h h

4. Формулы длины боковой стороны через площадь, среднюю линию и угол при основе:

с = S
m sin α

5. Формулы длины боковой стороны через площадь, основания и угол при основе:

с = 2S
( a + b ) sin α

Средняя линия равнобедренной трапеции

Формулы длины средней линии равнобедренной трапеции:

2. Формула средней линии трапеции через площадь и сторону:

m = S
c sin α

Высота равнобедренной трапеции

Формулы определения длины высоты равнобедренной трапеции:

Диагонали равнобедренной трапеции

Формулы длины диагоналей равнобедренной трапеции:

4. Формула длины диагонали через высоту и основания:

d 1 = 1 √ 4 h 2 + ( a + b ) 2
2

Площадь равнобедренной трапеции

Формулы площади равнобедренной трапеции:

2. Формула площади через стороны и угол:

3. Формула площади через радиус вписанной окружности и угол между основой и боковой стороной:

S = 4 r 2 = 4 r 2
sin α sin β

4. Формула площади через основания и угол между основой и боковой стороной:

S = ab = ab
sin α sin β

5. Формула площади ранобедренной трапеции в которую можно вписать окружность:

S = ( a + b ) · r = √ ab ·c = √ ab ·m

6. Формула площади через диагонали и угол между ними:

Читайте также:  Имя прилагательное неизменяемые признаки
S = d 1 2 · sin γ = d 1 2 · sin δ
2 2

7. Формула площади через среднюю линию, боковую сторону и угол при основании:

S = mc sin α = mc sin β

Окружность описанная вокруг трапеции

Формула определения радиуса описанной вокруг трапеции окружности:

1. Формула радиуса через стороны и диагональ:

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Источник

Что такое трапеция: определение, виды, свойства

В данной публикации мы рассмотрим определение, виды и свойства (касательно диагоналей, углов, средней линии, точки пересечения боковых сторон и т.д.) одной из основных геометрических фигур – трапеции.

Определение трапеции

Трапеция – это четырехугольник, две стороны которого параллельны, а остальные две – нет.

Параллельные стороны называются основаниями трапеции (AD и BC), две другие стороны – боковыми (AB и CD).

Угол при основании трапеции – внутренний угол трапеции, образованный ее основанием и боковой стороной, например, α и β.

Трапеция записывается путем перечисления его вершин, чаще всего, это ABCD. А основаниям обозначаются маленькими латинскими буквами, например, a и b.

Средняя линия трапеции (MN) – отрезок, соединяющий середины ее боковых сторон.

Высота трапеции (h или BK) – это перпендикуляр, проведенный от одного основания к другому.

Виды трапеций

Равнобедренная трапеция

Трапеция, боковые стороны которой равны, называется равнобедренной (или равнобокой).

Прямоугольная трапеция

Трапеция, у которой оба угла при одной из ее боковых сторон прямые, называется прямоугольной.

Разносторонняя трапеция

Трапеция является разносторонней, если ее боковые стороны не равны, и ни один из углов при основании не является прямым.

Свойства трапеции

Перечисленные ниже свойства применимы к любым видам трапеций. Свойства равнобедренной и прямоугольной трапеций представлены на нашем сайте в отдельных публикациях.

Свойство 1

Сумма углов трапеции, прилежащих к одной и той же боковой стороне, равна 180°.

Свойство 2

Средняя линия трапеции параллельна ее основаниям и равняется половине их суммы.

Свойство 3

Отрезок, который соединяет середины диагоналей трапеции, лежит на ее средней линии и равняется половине разности оснований.

Свойство 4

Точки пересечения диагоналей трапеции, продолжений ее боковых сторон и середин оснований лежат на одной прямой.

Если сумма углов при одном основании равняется 90° (т.е. ∠DAB + ∠ADC = 90°), значит продолжения боковых сторон трапеции пересекаются под прямым углом, а отрезок, который соединяет середины оснований (ML) равняется половине их разности.

Свойство 5

Диагонали трапеции делят ее на 4 треугольника, два из которых (при основаниях) подобны, а два других (при боковых сторонах) равны по площади.

Свойство 6

Отрезок, проходящий через точку пересечения диагоналей трапеции параллельно ее основаниям, можно выразить через длины оснований:

Свойство 7

Биссектрисы углов трапеции при одинаковой боковой стороне взаимно перпендикулярны.

Свойство 8

В трапецию можно вписать окружность только в том случае, если сумма длин ее оснований равна сумме длин ее боковых сторон.

Радиус вписанной в трапецию окружности равен половине ее высоты: R = h/2.

Источник

Равнобедренная трапеция, её ещё называют равнобокой, имеет равные боковые стороны. Кроме этого, у нее в арсенале есть еще множество интересных и полезных свойств, которые можно с легкостью применять на практике или при решении математических задач.

Определение, признаки и элементы трапеции

Трапецией в геометрии принято называть любой четырехугольник, у которого есть две параллельные друг другу стороны, при том что продолжения других двух сторон пересекаются.

Читайте также:  Признаки что вас вампирят

Определение же равнобедренной трапеции идет от того, что у нее боковые стороны эквиваленты по длине.

Свойства равнобедренной трапеции

Существует всего несколько основных свойств, присущих именно данной фигуре. Сейчас мы рассмотрим каждое из них:

Периметр равнобедренной трапеции

Эту величину найти очень просто. Простейшей формулой будет сложение всех ее сторон. Однако иногда составители задач не дают нам информацию обо всех из сторон.

В таком случае нам следует в первую очередь найти все стороны фигуры, а затем уже приступать к их сложению.

Как найти стороны трапеции?

Существует множество различных способов решения данной задачи, однако мы предложим только некоторые из них.

В первую очередь можно найти стороны с помощью средней линии:

Есть альтернатива, если вам известны высота и угол при большем основании:

Средняя линия

Средней линией в трапеции называется параллельный основаниям отрезок, который делит боковые стороны фигуры на равные части.

У нее есть множество интересных свойств и теорем с нетрудным доказательством, таких как, например, решение задач на подобие, однако мы на них останавливаться не будем.

Высота трапеции

Высотой трапеции называется самый короткий по длине отрезок, который продолжается ровно от одного основания до другого. Он выполняет своеобразную вспомогательную роль в задачах вплоть до 10 класса с неизвестными сторонами и в тех задачах, где нужно дополнить фигуру до прямоугольника, например.

Для нахождения длины этого отрезка нам необходимо знать оба основания (a и b), а также боковую сторону c. Также полезно было бы знать угол при большем основании α. Формулы здесь довольно простые и не нуждаются в доказательстве.

Диагональ трапеции

Эта линия просто идет от одного угла трапеции к другому, причем эти углы противоположны. В равнобедренной трапеции довольно приятным фактом является то, что диагонали в ней равны друг другу.

А каким образом можно найти длину диагонали? Есть один очень простой способ. Мы можем сделать это, зная все три величины: боковую сторону и каждое из оснований:

Площадь равнобедренной трапеции

Самой простой формулой является полусумма оснований, умноженная на высоту. Она подходит к любым трапециям.

Для второй формулы нужно знать все стороны трапеции. Это по сути усложненная версия первой, но подойдет она в том случае, если вы не знаете высоту.

Это самые базовые формулы, поэтому очень часто используются в различных задачах.

Вписанная и описанные окружности

Интересно, что вписать в трапецию окружность можно только при определенном условии. И это условие выполняется, если мы попарно сложим противоположные стороны нашего четырехугольника, и эти суммы окажутся равны.

Найти радиус этой окружности не составит труда. Нужно просто разделить высоту пополам.

А вот с описанной окружностью все не так гладко. Есть различные полезные формулы. Например, если диагональ составляет с основанием прямой угол, то диаметр описанной окружности будет равен противоположному основанию трапеции.

Теперь разберемся с формулой нахождения радиуса. К слову, она здесь не очень простая. Сначала найдем p — полупериметр ∆DBC, а затем просто применим его в следующей формуле:

Математика бесспорно является матерью всех современных наук. Она по праву занимает свой престол и управляет абсолютно всеми мировыми законами.

Одной из наиболее интересных подразделений математики принято считать именно геометрию. Ее фигуры также подчиняются математическим правилам и формулам, поэтому она необходима при различных сложных расчетах.

Источник