Виды статистических показателей и статистических признаков

Статистический показатель и его виды

На этапе статистического наблюдения получены показатели, характеризующие отдельные единицы изучаемой совокупности. Результатом любого статистического исследования являются получение различные статистические показатели, позволяющие оценить уровень, вариацию, структуру, взаимосвязи и динамику изучаемых социально-экономических процессов и явлений.

Статистический показатель — это, количественно – качественная характеристика какого – то свойства группы единиц совокупности или совокупности в целом.

В отличие от признака статистический показатель получают расчетным путем. Объем продукции предприятия за месяц, годовой объем внешнеторгового оборота – статистический показатель. Статистические показатели определяются путем суммирования абсолютных значений признака (численность населения, безработных, трудовых ресурсов), вычисления средних значений признаков (средняя заработная плата, средний доход на душу населения), относительных величин (индекс себестоимости, темпы прироста).

Статистические показатели могут быть плановыми, отчетными и прогностическими (т. е. выступать в качестве прогнозных оценок).

Выделяют три формы выражения статистических показателей. В зависимости от характера исходных данных и методологии исчисления статистические показатели могут быть выражены в форме абсолютных, относительных или средних величин. Эти три формы выражения статистических показателей подробно рассмотрены в последующих параграфах данной главы.

В зависимости от охвата единиц изучаемой статистической совокупности показатели подразделяются на индивидуальные и сводные.

Индивидуальные показатели характеризуют отдельный объект или отдельную единицу совокупности – предприятие, фирму, банк, домохозяйство и т. п. Примером индивидуальных абсолютных показателей может служить численность промышленно-производственного персонала предприятия, оборот торговой фирмы, совокупный доход домохозяйства.

Индивидуальный относительный показатель представляет собой результат соотнесения двух индивидуальных абсолютных показателей, характеризующих один и тот же объект или единицу совокупности. Например, рентабельность продукции отдельного предприятия получают как отношение прибыли от реализации продукции и услуг к затратам на их производство и реализацию. Сводные показатели в отличие от индивидуальных характеризуют группу единиц, представляющую собой часть статистической совокупности или всю совокупность в целом. Эти показатели, в свою очередь, подразделяются на объемные и расчетные

Объемные показатели получают путем сложения значений признака отдельных единиц совокупности. Полученная величина, называемая объемом признака, может выступать в качестве объемного абсолютного показателя (например, стоимость основных фондов всех предприятий отрасли), а может сравниваться с другой объемной абсолютной величиной (например, с численностью промышленно-производственного персонала этих предприятий) или объемом совокупности (в данном примере – с числом предприятии). В последних двух случаях получают объемный относительный и объемный средний показатели (соответственно – фондовооруженность и средняя стоимость основных фондов).

Расчетные показатели, вычисляемые по различным формулам, служат для решения отдельных статистических задач анализа – измерения вариации, характеристики структурных сдвигов, оценки взаимосвязи и т. д. Они также делятся на абсолютные, относительные или средние. В эту группу входят индексы, коэффициенты тесноты связи, ошибки выборки и прочие показатели, подробно рассмотренные ниже в соответствующих главах.

По временному фактору используемые в статистической практике показатели делятся на моментные и интервальные.

Моментные показатели характеризуют изучаемые социально-экономические процессы и явления по состоянию на определенную дату, начало или конец месяца, года, т.е. на определенный момент времени. К таким показателям относится численность населения, стоимость основных фондов, дебиторская задолженность и другие.

Интервальные показатели позволяют получать значения признаков за определенный период – день, неделю, месяц, квартал, год (производство продукции, число заключенных браков, сумма страховых выплат). Отличительной особенностью интервальных показателей является возможность их суммирования. Например, суммируя производство продукции предприятия по месяцам мы получаем общий объем производства за год.

В зависимости от принадлежности к одному или двум объектам изучения различают однообъектные и межобъектные показатели. Если первые характеризуют только один объект, то вторые получают в результате сопоставления двух величин, относящихся к разным объектам (соотношение численности населения городов Москвы и Санкт-Петербурга, соотношение численности детей дошкольного возраста и числа мест в детских дошкольных учреждениях и т. п.). Межобъектные показатели выражаются в форме относительных или средних величин.

С точки зрения пространственной определенности статистические показатели подразделяются на общетерриториальные, характеризующие изучаемый объект или явление в целом по стране, региональные и местные (локальные), относящиеся к какой-либо части территории или отдельному населенному пункту.

Так как отдельные свойства совокупности связанны между собой, то и статистические показатели, характеризующие эти свойства, не являются обособленными и образуют определенную систему показателей.

Система статистических показателей — совокупность статистических показателей, отражающая взаимосвязи, которые объективно существуют между явлениями.

Для каждой общественно-экономической формации характерна определенная система взаимосвязи общественных явлений, что обусловливает статистические показатели. Система статистических показателей охватывает все стороны жизни общества на различных уровнях: страны и региона (макроуровень), предприятий, фирм, объединений, семей и домохозяйств и т. д. (микроуровень).

Источник

Виды статистических показателей.

Статистический показатель —это число, характеризующее размеры или количественные соотношения изучаемых признаков.

Статистические показатели выражаются в форме абсолютных, относительных и средних статистических величин.

Абсолютный показатель является количественным выражением признаков статистических явлений и характеризуют либо:

• Отдельный объект (отдельную единицу совокупности) – 1 предприятие, 1 рабочего, – индивидуальныеабсолютные величины. Они получаются в процессе статистического наблюдения как результат оценки, подсчета, замера количественного признака.

• Группу единиц, представляя собой часть статистической совокупности, или всю в целом – сводные (обобщающие) статистические показатели. Они получаются суммированием отдельных индивидуальных величин в результате сводки и группировки значений индивидуальных абсолютных показателей

Примеры абсолютных индивидуальных и обобщающих показателей

Турфирма «Таруса» (Калужская область) в 2013 г. продала 111турпакетов.

Абсолютные показатели выражают:

• либо численность единиц изучаемой совокупности, ее отдельных составных частей;

В зависимости от сущности исследуемого явления и поставленных задач единицы измерения могут быть натуральными, условно-натуральными, стоимостными и трудовыми.

По своей природе относительные величины производны от деления текущего (сравниваемого) абсолютного показателя на базисный показатель.

Относительные показатели могут быть получены или как соотношения одноименных статистических показателей, или как соотношения разноименных статистических показателей. В первом случае получаемый относительный показатель рассчитывается или процентах, или в относительных единицах, или в промилле (в тысячных долях).

Если соотносятся разноименные абсолютные показатели, то относительный показатель в большинстве случаев бывает именованным.

В качестве примера, можно привести коэффициент использования гостиничного фонда по России в 2011 г., который составил в 2011 г. 0,32, или 32%. Этот коэффициент рассчитывается на основе сопоставления общего числа ночевок и единовременной вместимости гостиничных предприятий, умноженной на число дней в году.

Относительные показатели, используемые в статистической практике:

• относительная величина структуры;

• относительная величина координации;

• относительная величина планового задания;

• относительная величина выполнения плана;

• относительная величина динамики;

• относительная величина сравнения;

• относительная величина интенсивности

Рассмотрим способы вычисления некоторых из них.

Относительная величина структуры (ОВС) характеризует структуру совокупности, определяет долю (удельный вес) части в общем объеме совокупности. ОВС рассчитывают как отношение объема части совокупности к абсолютной величине всей совокупности (%):

В соответствии со следующей таблицей, доля фирм, занимавшихся только экскурсионной деятельностью в 2015г. составила 684./11893=5,8%.

Относительная величина координации (ОВК) характеризует соотношение между двумя частями исследуемой совокупности, одна из которых выступает как база сравнения (%):

Относительная величина динамики (ОВД) характеризует изменение объема одного и того же явления во времени в зависимости от принятого базового уровня. ОВД рассчитывают как отношение уровня анализируемого явления или процесса в текущий момент времени к уровню этого явления или процесса за прошедший период времени. В результате мы получаем коэффициент роста, который выражается кратным отношением. При исчислении этой величины в процентах (результат умножается на 100) получаем темп роста.

Источник

Виды статистических показателей

Статистические показатели – количественная характеристика соц-эконом явлений в условия качественной определенности. Система стат. показателей – совокупность взаимосвязаны показателей, имеющих одноуровневую или многоуровневую структуру и нацеленные на решение конкретной стат. задачи. Виды: 1) конкретный стат. показатель – характеризует размер, величину изучаемого явления в определенном месте и в определенное время; 2) показатель-категория – отражает сущность, общие свойства конкретного стат. показателя одного и того же вида без указания места и времени. По обхвату единиц совокупности: 3) индивидуальные – характеризуют 1 объект или 1 единицу совокупности; 4) сводные – характеризуют группу совокупностей или всю совокупность в целом; виды сводных: объемные (получают путем суммирования значений признака отдельных единиц совокупности) и расчетные (определяются по формулам). По способу выражения: 5) абсолютные; 6) относительные; 7) средние.

Читайте также:  При гиперкалиемии характерный признак

11. Абсолютные показатели – отражают физические размеры изучаемы статистикой процессов и явлений (объем, масса, время); всегда являются именованными числами, выраженных в натуральных (тонны, км, штуки; условно-натуральные – используются, когда продукт имеет несколько разновидностей и общий объем можно определить только исходя из общего для всех разновидностей потребительского свойства), стоимостных (дают денежную оценку соц-эконом явлениям) или трудовых (позволяют учитывать общие затраты труда на предприятии; например, человеко-часы) единицах измерения.

12. Относительные показатели – представляют собой результат деления одного абсолютного показателя на другой и выражают соотношение между количественными характеристиками соц-эконом явления. 1) Относительный показатель динамики (ОПД) – представляет собой отношение уровня исследуемого явления или процесса на данный момент времени к уровню этого же явления в прошлом; выражается в процентах или в виде коэффициента. ОПД = у1/у0 * 100%, у1 – текущий период. 2) Относительный показатель плана (ОПП) – представляет собой отношения планируемого уровня показателя к уже достигнутому его уровню в прошлом. ОПП = у-план/у0 * 100%. 3) Относительный показатель реализации плана (ОПРП) – представляет собой отношение фактически достигнутого уровня к запланированному уровню показателя. ОПРП = у1/у-план * 100%. 4) Относительный показатель структуры (ОПС) – соотношение структурных частей изучаемого объекта; определяется отношением показателя, характеризующего часть совокупности, к показателю, характеризующему всю совокупность. Выражается в доля или в процентах. ОПС = у/∑у. 5) Относительный показатель сравнения (ОПСр) – представляет собой соотношение одноименных абсолютных показателей, характеризующих разные объекты. ОПСр = уА/уБ * 100%. 6) Относительный показатель координации (ОПК) – соотношение разных частей, принадлежащих одному объекту. ОПК = уА1/уА2 * 100%. 7) Относительный показатель интенсивности (ОПИ) – характеризует степени распространения изучаемого процесса или явления в присущей ему среде; определяется отношением показателя, характеризующего явления, к показателю, характеризующего среду распространения явления. Выражается в процентах, промилле, продецимилле и т.д. ОПИ = уА/А. Особым видом ОПИ является показатель уровня экономического развития, характеризующий, например, производство ВВП на душу населения, товарооборот на душу населения и т.п.

Источник

Понятие статистического показателя. Формы выражения и виды статистических показателей

Формы выражения:

1) общее число единиц совокупности;

2) общая сумма значений количественного признака единиц совокупности;

3) средняя величина признака;

4) величина данного признака по отношению к величине другого.

Численное значение статистического показателя, выраженное в единицах измерения, называется его величиной.

Статистические показатели условно подразделяют на первичные (объемные, количественные, экстенсивные) и вторичные (производные, качественные, интенсивные).

Первичныехарактеризуют общее число единиц совокупности либо сумму значений какого-то их признака.

Вторичные, производные показатели выражаются средними и относительными величинами.

Показатели, характеризующие размер сложного комплекса социально-экономических явлений и процессов, называют синтетическими.

В зависимости от применяемых единиц измерения различают показатели: натуральные, стоимостные и трудовые.

В зависимости от сферы применения различают показатели, исчисленные на региональном, отраслевом уровнях и т. д.

По точности отражаемого явления различают ожидаемые, предварительные и окончательные величины показателей.

По отношению к изучаемому свойству различают прямые и обратные показатели. Величина прямых показателей увеличивается с увеличением исследуемого явления, обратных показателей уменьшается с увеличением исследуемого явления.

В зависимости от объема и содержания объекта статистического изучения различают индивидуальные(характеризующие отдельные единицы совокуп­ности) и сводные(обобщающие) показатели.

Особенности обобщающих показателей:1)дают сводную характеристику совокупностям

единиц изучаемых общественных явлений; 2) выражают существующие между явлениями связи, зависимости; характеризуют происходящие в явлениях изменения, складывающиеся закономерности их развития и т. д.

Аналитические показателихарактеризуют статистическую совокупность. К ним относят:

1) средние величины;

2) показатели вариации;

3) показатели связи признаков;

4) показатели структуры и характера распределения;

5) показатели динамики;

6) показатели колеблемости;

7) показатели точности и надежности;

8) показатели точности и надежности прогнозов.

Система статистических показателей— совокупность статистических показателей, отражающих различные количественные аспекты и взаимосвязи изучаемых явлений и процессов.

Абсолютные величины.

Первичная статистическая информация выражается прежде всего в виде абсолютных показателей, которые являются количественной базой всех форм учета.

Абсолютные показатели характеризуют итоговую численность единиц совокупности или ее частей, размеры (объемы, уровни) изучаемых явлений и процессов, выражают временные характеристики. Абсолютные показатели могут быть только именованными числами, где единица измерения выражается в конкретных цифрах.

В зависимости от сущности исследуемого явления и поставленных задач единицы измерения могут бытьнатуральными (физические меры массы, длины, объема), условно-натуральными (например, молочные продукты с разным содержанием сливочной основы, мыло с разным содержанием жирных кислот и т.д.), стоимостными (денежное выражение) и трудовыми (затраты труда, трудоемкость технологических операций в человеко-днях, человеко-часах).

Вся совокупность абсолютных величин включает как индивидуальные показатели (характеризуют значения отдельных единиц совокупности), так исуммарные показатели (характеризуют итоговое значение нескольких единиц совокупности или итоговое значение существенного признака по той или иной части совокупности).

Абсолютные показатели следует также подразделить на моментные и интервальные.

Моментные абсолютные показатели характеризуют факт наличия явления или процесса, его размер (объем) на определенную дату времени.

Интервальные абсолютные показатели характеризуют итоговый объем явления за тот или иной период времени (например, выпуск продукции за квартал или за год и т. д.), допуская при этом последующее суммирование.

Относительные величины.

Относительные величины — это отвлеченные статистические величины, выражающие количественное соотношение двух величин. Относительные величины измеряются в коэффициентах, процентах, промилях, комплексных единицах.

Видыотносительныхвеличин:

1)относительные величины динамики-
это отношение фактической величины показателя в отчетном периоде (У1) к фактической его величине в базисном, предшествующем периоде(У):

Относительные величины динамики характеризуют изменение явления во времени. В статистике эти показатели называются темпами роста;

2) относительные величины выполнения плана-
это отношение фактической величины показателя (У1) к плановой его величине (Уплан) того же периода:

Эта относительная величина показывает степень выполнения плана в процентах;

3) относительная величина выполнения планового задания
это отношение планируемой величины показателя (Уплан) к фактически достигнутой величине в предшествующем периоде, т.е. в базисном (у):

Показывает, на сколько процентов плановое задание выше (ниже) фактически достигнутого в базисном периоде.Эту величину называют плановым темпом роста;

7) относительная величина сравнения— это отношение одноименных величин, характеризующих разные объекты изучения за один и тот же период. Показывает, во сколько разчислитель больше (меньше) знаменателя.

Средняя арифметическая взвешенная имеет следующий вид:

Если значения X заданы в виде интервалов, то для расчетов используют середины интервалов X, которые определяются как полусумма верхней и нижней границ интервала. А если у интервала X остутствует нижнияя или верхняя граница (открытый интервал), то для ее нахождения применяют размах (разность между верхней и нижней границей) соседнего интервала X.

Средняя арифметическая применяется чаще всего, но бывают случаи, когда необходимо применение других видов средних величин.

Б) Средняя гармоническая применяется, когда исходные данные не содержат частот f по отдельным значениям X, а представлены как их произведение Xf. Обозначив Xf=w, выразим f=w/X, и, подставив эти обозначения в формулу средней арифметической взвешенной, получим формулу средней гармонической взвешенной:

Таким образом, средняя гармоническая взвешенная применяется тогда, когда неизвестны частоты f, а известно w=Xf. В тех случаях, когда все w=1, то есть индивидуальные значения X встречаются по 1 разу, применяется формула средней гармонической простой:

Средняя геометрическая и средняя хронологическая.

А) Средняя геометрическая применяется при определении средних относительных изменений.

Геометрическая средняя величина дает наиболее точный результат осреднения, если задача стоит в нахождении такого значения X, который был бы равноудален как от максимального, так и от минимального значения X.

ХНМо – нижняя граница модального интервала;

hМо – размах модального интервала (разность между его верхней и нижней границей);

fМо – частота модальноого интервала;
fМо-1 – частота интервала, предшествующего модальному;
fМо+1 – частота интервала, следующего за модальным.
Если размах интервалов h разный, то вместо частот f необходимо использовать плотности интервалов, рассчитываемые путем деления частот f на размах интервала h.

Если X задан в виде равных интервалов, то сначала определяется медианный интервал (интервал, в котором заканчивается одна половина частот f и начинается другая половина), в котором находят условное значение медианы по формуле:

ХНМе – нижняя граница медианного интервала;

hМе – размах медианного интервала (разность между его верхней и нижней границей);

fМе – частота медианного интервала;

fМе-1 – сумма частот интервалов, предшествующих медианному.
Также как и в случае с модой, при определении медианы если размах интервалов h разный, то вместо частот f необходимо использовать плотности интервалов, рассчитываемые путем деления частот f на размах интервала h.

Читайте также:  Признаки активного рефлекса окситоцина

29.Понятие вариации, ее значение.

К абсолютным показателям вариации относят: размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, дисперсию.
К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение и др.

Источник

Статистические величины и показатели

Назначение и виды статистических показателей и величин

Природа и содержание статистических показателей соответствует тем экономическим и социальным явлениям и процессам, которые их отражают. Все экономические и социальные категории или понятия носят абстрактный характер, отражают наиболее существенные черты, общие взаимосвязи явлений. И для того чтобы измерить размеры и соотношения явлений или процессов, т. е. дать им соответствующую количественную характеристику, разрабатывают экономические и социальные показатели, соответствующие каждой категории (понятию). Именно соответствием показателей сущности экономических категорий обеспечивается единство количественной и качественной характеристик экономических и социальных явлений и процессов.

Различают два вида показателей экономического и социального развития общества: плановые (прогнозные) и отчетные (статистические). Плановые показатели представляют собой определенные конкретные значения показателей, достижение которых прогнозируется в будущих периодах. Отчетные показатели (статистические) характеризуют реально сложившиеся условия экономического и социального развития, фактически достигнутый уровень за определенный период; это объективная количественная характеристика (мера) общественного явления или процесса в его качественной определенности в конкретных условиях места и времени. Каждый статистический показатель имеет качественное социально-экономическое содержание и связанную с ним методологию измерения. Статистический показатель имеет также ту или иную статистическую форму (структуру) и может выражать:

Статистический показатель имеет также определенное количественное значение. Это численное значение статистического показателя, выраженное в определенных единицах измерения, называется величиной показателя.

Величина показателя обычно варьируется в пространстве и колеблется во времени. Поэтому обязательным атрибутом статистического показателя являются также указание территории и момента либо периода времени.

Статистические показатели можно условно подразделить на первичные (объемные, количественные, экстенсивные) и вторичные (производные, качественные, интенсивные).

Первичные показатели характеризуют либо общее число единиц совокупности, либо сумму значений какого-либо их признака. Взятые в динамике, в изменении во времени, они характеризуют экстенсивный путь развития экономики в целом или конкретного предприятия в частном случае. По статистической форме эти показатели являются суммарными статистическими величинами.

Вторичныге показатели обычно выражаются средними и относительными величинами и, взятые в динамике, обычно характеризуют путь интенсивного развития.

Показатели, характеризующие размер сложного комплекса социально-экономических явлений и процессов, часто называют синтетическими (валовый внутренний продукт (ВВП), национальный доход, производительность общественного труда, потребительская корзина и др.).

В зависимости от применяемый единиц измерения различают показатели натуральные, стоимостные и трудовые (в человеко-часах, нормо-часах). В зависимости от сферы применения различают показатели, исчисленные на региональном, отраслевом уровнях и т. д. По точности отражаемого явления различают ожидаемые, предварительные и окончательные величины показателей.

В зависимости от объема и содержания объекта статистического изучения различают индивидуальные (характеризующие отдельные единицы совокупности) и сводные (обобщающие) показатели. Таким образом, статистические величины, которые характеризуют собой массы или совокупности единиц, называются обобщающими статистическими показателями (величинами). Обобщающие показатели играют очень важную роль в статистическом исследовании благодаря следующим отличительным особенностям:

Объективное и достоверное исследование сложных экономических и социальных категорий возможно только на основе системы статистических показателей, которые в единстве и взаимосвязи характеризуют различные стороны и аспекты состояния и динамики развития этих категорий.

Статистические показатели, объективно отражая единство и взаимосвязи экономических и социальных явлений и процессов, не являются надуманными, произвольно сконструированными догмами, установленными раз и навсегда. Наоборот, динамичное развитие общества, науки, вычислительной техники, совершенствование статистической методологии приводят к тому, что устаревшие, потерявшие свое значение показатели изменяются либо исчезают и появляются новые, более совершенные показатели, объективно и достоверно отражающие современные условия общественного развития.

Таким образом, построение и совершенствование статистических показателей должно основываться на соблюдении двух основных принципов:

Кроме того, величины показателей должны правильно количественно измеряться с учетом уровня, масштабов и качественных признаков состояния или развития соответствующего экономического или социального явления (отраслевой и региональной уровни, отдельное предприятие или работник и т. п.). При этом построение показателей должно носить сквозной характер, позволяющий не только суммировать соответствующие показатели, но и обеспечивать их качественную однородность в группах и совокупностях, переход от одного показателя к другому для полной характеристики объема и структуры более сложной категории или явления. Наконец, построение статистического показателя, его структура и сущность должны предусматривать возможность всесторонне анализировать изучаемое явление или процесс, характеризовать особенности его развития, определять влияющие на него факторы.

Вычисление статистических величин и анализ данных об изучаемых явлениях – это третий и завершающий этап статистического исследования. В статистике рассматривают несколько видов статистических величин: абсолютные, относительные и средние величины. К числу обобщающих статистических показателей относятся также аналитические показатели рядов динамики, индексы и др.

Абсолютные статистические величины

Статистическое наблюдение независимо от его масштабов и целей всегда дает информацию о тех или иных социально-экономических явлениях и процессах в виде абсо-лютны1х показателей, т. е. показателей, представляющих собой количественную характеристику социально-экономических явлений и процессов в условиях качественной определенности. Качественная определенность абсолютных показателей заключается в том, что они напрямую связаны с конкретным содержанием изучаемого явления или процесса, с его сущностью. В связи с этим абсолютные показатели и абсолютные величины должны иметь определенные единицы измерения, которые наиболее полно и точно отражали бы его сущность (содержание).

Абсолютные показатели являются количественным выражением признаков статистических явлений. Например, рост – это признак, а его значение – это показатель роста.

Абсолютный показатель должен характеризовать размер изучаемого явления или процесса в данном месте и в данное время, он должен быть «привязан» к какому-нибудь объекту или территории и может характеризовать либо отдельную единицу совокупности (отдельный объект) – предприятие, рабочего, либо группу единиц, представляющую часть статистической совокупности, или статистическую совокупность в целом, например численность населения в стране, и т. п. В первом случае речь идет об индивидуальных абсолютных показателях, а во втором – о сводных абсолютных показателях.

Индивидуальными называют абсолютные величины, характеризующие размеры отдельных единиц совокупности (например, количество деталей, изготовленных одним рабочим за смену, число детей в отдельной семье). Их получают непосредственно в процессе статистического наблюдения и фиксируют в первичных учетных документах. Индивидуальные показатели получают в процессе статистического наблюдения за теми или иными явлениями и процессами как результат оценки, подсчета, замера фиксированного интересующего количественного признака.

Сводные абсолютные величины получаются, как правило, путем суммирования отдельных индивидуальных величин. Сводные абсолютные показатели получают в результате сводки и группировки значений индивидуальных абсолютных показателей. Так, например, в процессе переписи населения органы государственной статистики получают итоговые абсолютные данные о численности населения страны, о распределении его по регионам, по полу, возрасту и т. д.

К абсолютным показателям также можно отнести показатели, которые получаются не в результате статистического наблюдения, а в результате какого-либо расчета. Как правило, данные показатели – это разность между двумя абсолютными показателями. Например, естественный прирост (убыль) населения находится как разность между числом родившихся и числом умерших за определенный период времени; прирост продукции за год находится как разность между объемом произведенной продукции на конец года и объемом произведенной продукции на начало года. При составлении долгосрочных прогнозов развития экономики страны рассчитывают предположительные данные о материальных, трудовых, финансовых ресурсах. Как видно из примеров, эти показатели будут абсолютными, так как имеют абсолютные единицы измерения.

Абсолютные величины отражают естественную основу явлений, т. е. выражают либо численность единиц изучаемой совокупности, ее отдельных составных частей, либо их абсолютные размеры в натуральных единицах, вытекающих из их физических свойств (вес, длина и т. п.), или в единицах измерения, вытекающих из их экономических свойств (стоимость, затраты труда). Следовательно, абсолютные величины всегда имеют определенную размерность.

Кроме того, абсолютные статистические показатели всегда выражаются в натуральных, стоимостных и трудовых единицах измерения в зависимости от сущности описываемых ими процессов и явлений.

Натуральные измерители характеризуют явления в свойственной им натуральной форме и выражаются в мерах длины, веса, объема и т. п. или количеством единиц, числом событий. К натуральным можно отнести такие единицы измерения, как тонна, килограмм, метр и т. д., например: объем жилищного строительства составил 2000 м2.

В ряде случаев используются комбинированные единицы измерения, представляющие собой произведение двух величин, выраженных в различных размерностях. Так, например, производство электроэнергии измеряется в киловатт-часах, грузооборот – в тонна-километрах и т. п.

Читайте также:  Для отождествления человека по признакам внешности назначается экспертиза

В группу натуральных единиц измерения входят и так называемые условно натуральныге единицы измерения. Их применяют для получения суммарных абсолютных величин в случае, когда индивидуальные величины характеризуют отдельные разновидности продукции, близкие по своим потребительским свойствам, но отличающиеся, например, содержанием жира, спирта, калорийностью и т. п. При этом одна из разновидностей продукции принимается за условный натуральный измеритель, и к ней с помощью переводных коэффициентов, выражающих соотношение потребительских свойств (иногда трудоемкости, себестоимости и т. д.) отдельных разновидностей, приводятся все разновидности этого продукта.

Трудовые единицы измерения используют для характеристики показателей, которые позволяют оценить затраты труда, отражают наличие, распределение и использование трудовых ресурсов, например трудоемкость выполненных работ в человеко-днях.

Натуральные, а иногда и трудовые измерители не позволяют получить сводные абсолютные показатели в условиях разнородной продукции. В этом плане универсальными являются стоимостные единицы измерения, которые дают стоимостную (денежную) оценку социально-экономическим явлениям, характеризуют стоимость определенной продукции или объема выполненных работ. Например, в денежной форме выражаются такие важные для экономики страны показатели, как национальный доход, валовой внутренний продукт, а на уровне предприятия – прибыль, собственные и заемные средства.

Наибольшее предпочтение в статистике отдается стоимостным единицам измерения, так как стоимостный учет является универсальным, однако он не всегда может быть приемлем.

Абсолютные показатели могут быть рассчитаны во времени и пространстве. Например, динамика численности населения Российской Федерации с 1991 по 2004 г. отражается временным фактором, а уровень цен на хлебобулочные изделия по регионам РФ за 2004 г. характеризуется пространственным сравнением.

При учете абсолютных показателей во времени (в динамике) их регистрация может быть осуществлена на определенную дату, т. е. какой-либо момент времени (стоимость основных средств предприятия на начало года) и за какой-либо период времени (число родившихся за год). В первом случае показатели являются моментальными, во втором – интервальными.

С точки зрения пространственной определенности абсолютные показатели делят следующим образом: общие территориальные, региональные и локальные. Например, объем ВВП (валовой внутренний продукт) – общий территориальный показатель, объем ВРП (валовой региональный продукт) – региональный признак, численность занятых в городе – локальный признак, т. е. первая группа показателей характеризует страну в целом, региональные – конкретный регион, локальные – отдельный город, населенный пункт и т. д.

Абсолютные показатели не дают ответа на вопрос, какую долю имеет та или иная часть в общей совокупности, не могут охарактеризовать уровни планового задания, степень выполнения плана, интенсивность того или иного явления, так как они не всегда пригодны для сравнения и поэтому часто используются лишь для расчета относительных величин.

Относительные статистические величины

Наряду с абсолютными величинами одной из важнейших форм обобщающих показателей в статистике являются относительные величины – это обобщающие показатели, выражающие меру количественных соотношений, присущих конкретным явлениям или статистическим объектам. При расчете относительной величины измеряется отношение двух взаимосвязанных величин (преимущественно абсолютных), что очень важно в статистическом анализе. Относительные величины широко используются в статистическом исследовании, так как они позволяют провести сравнения различных показателей и делают такое сравнение наглядным.

Относительные величины вычисляются как отношение двух чисел. При этом числитель называется сравниваемой величиной, а знаменатель – базой относительного сравнения. В зависимости от характера изучаемого явления и задач исследования базисная величина может принимать различные значения, что приводит к различным формам выражения относительных величин. Относительные величины измеряются:

В каждом конкретном случае выбор той или иной формы относительной величины определяется задачами исследования и социально-экономической сущностью, мерой которого выступает искомый относительный показатель. По своему содержанию относительные величины подразделяются на следующие виды:

Относительная величина договорных обязательств представляет собой отношение фактического выполнения договора к уровню, предусмотренному договором:

Эта величина отражает степень выполнения предприятием своих договорных обязательств, и может быть выражена в виде числа (целого или дробного) или в процентах. При этом необходимо, чтобы числитель и знаменатель исходного отношения соответствовали одному и тому же договорному обязательству.

Относительными величинами динамики – темпами роста – называются показатели, характеризующие изменение величины общественных явлений во времени. Относительная величина динамики показывает изменение однотипных явлений за период времени. Рассчитывается эта величина посредством сравнения каждого последующего

периода с первоначальным или предыдущим. В первом случае получаем базисные величины динамики, а во втором – цепные величины динамики. И те и другие величины выражаются либо в коэффициентах, либо в процентах. Выбору базы сравнения при расчете относительных величин динамики, как и других относительных показателей, следует уделять особое внимание, так как от этого в существенной мере зависит практическая ценность полученного результата.

Относительные величины структуры характеризуют составные части изучаемой совокупности. Относительная величина совокупности рассчитывается по формуле

Относительные величины структуры, обычно называемые удельными весами, рассчитываются делением определенной части целого на общий итог, принимаемый за 100 %. У этой величины есть одна особенность – сумма относительных величин изучаемой совокупности всегда равна 100 % или 1 (в зависимости от того, в чем она выражается). Относительные величины структуры применяются при изучении сложных явлений, распадающихся на ряд групп или частей, для характеристики удельного веса (доли) каждой группы в общем итоге.

Относительные величины координации характеризуют соотношение отдельных частей совокупности с одной из них, принятой за базу сравнения. При определении этой величины одна из частей целого берется за базу для сравнения. С помощью этой величины можно соблюдать пропорции между составляющими совокупности. Показателями координации является, например, число городских жителей, приходящихся на 100 сельских; число женщин, приходящихся на 100 мужчин, и т. п. Характеризуя соотношение между отдельными частями целого, относительные величины координации придают им наглядность и позволяют, если это возможно, контролировать соблюдение оптимальных пропорций. Так как числитель и знаменатель относительных величин координации имеют одинаковую единицу измерения, то эти величины выражаются не в именованных числах, а в процентах, промилле или кратных отношениях.

Относительными величинами интенсивности называются показатели, определяющие степень распространенности данного явления в какой-либо среде. Они рассчитываются как отношение абсолютной величины данного явления к размеру среды, в которой оно развивается. Относительные величины интенсивности находят широкое применение в практике статистики. Примером этой величины может быть отношение численности населения к площади, на которой оно проживает, фондоотдача, обеспеченность населения врачебной помощью (численность врачей на 10 000 населения), уровень производительности труда (выпуск продукции на одного работника или в единицу рабочего времени) и т. п.

Таким образом, относительные величины интенсивности характеризуют эффективность использования различного рода ресурсов (материальных, финансовых, трудовых), социальный и культурный уровень жизни населения страны, многие другие аспекты общественной жизни.

Относительные величины интенсивности вычисляются путем сопоставления разноименных абсолютных величин, находящихся в определенной связи друг с другом, и в отличие от других видов относительных величин являются обычно именованными числами и имеют размерность тех абсолютных величин, соотношение которых они выражают. Тем не менее в ряде случаев, когда полученные результаты расчетов слишком малы, их умножают для наглядности на 1000 или 10 000, получая характеристики в промилле и продецимилле.

Особый интерес представляет разновидность относительных величин интенсивности – валовой внутренний продукт на душу населения. Применяя этот показатель в различных отраслях или конкретных видах продукции, можно получать следующие относительные величины интенсивности: производство электроэнергии, топлива, машин, оборудования, услуг, товаров и т. д. на душу населения.

Относительными величинами сравнения называются относительные показатели, получающиеся в результате сравнения одноименных уровней, относящихся к различным объектам или территориям, взятым за один и тот же период или на один момент времени. Они также исчисляются в коэффициентах или процентах и показывают, во сколько раз одна сравнимая величина больше или меньше другой.

Относительные величины сравнения находят широкое применение при сравнительной оценке различных показателей работы отдельных предприятий, городов, регионов, стран. При этом, например, результаты работы конкретного предприятия и т. п. принимаются за базу сравнения и последовательно соотносятся с результатами аналогичных предприятий других отраслей, регионов, стран и т. д.

В статистическом изучении общественных явлений абсолютные и относительные величины дополняют друг друга. Если абсолютные величины характеризуют как бы статику явлений, то относительные величины позволяют изучить степень, динамику, интенсивность развития явлений. Для правильного применения и использования абсолютных и относительных величин в экономико-статистическом анализе необходимо:

Источник