Виды нервных волокон по морфологическому признаку

Виды нервных волокон по морфологическому признаку

Взаимодействия между глиальными и нервными клетками отчетливо проявляются в процессах развития и структурной организации нервных волокон. Нервным волокном называется отросток нервной клетки, окруженный глиальной оболочкой.

Непосредственно сам отросток называют еще осевым цилиндром, а клетки глиальной оболочки — нейролеммоцитами. Различают миелиновые (мякотные) и безмиелиновые (безмякотные) нервные волокна.

В безмиелиновых нервных волокнах отростки нервных клеток погружены в углубления на поверхности нейролеммоцитов, имеющих вид желоба. Погруженный в тело глиальной клетки нервный отросток ограничен как собственной плазмолеммой, так и внешней мембраной нейролеммоцита. Он как бы подвешен на двухлистковой ее складке. Эти складки мембран (своеобразные ультраструктурные «брыжейки») называют мезаксонами. Безмиелиновые волокна могут включать несколько осевых цилиндров.

Миелиновое нервное волокно состоит из нервного отростка и нейролеммоцитов (шванновских клеток). Осевой цилиндр не просто погружен в цитоплазму нейролеммоцита, а окружен спиральной слоистой оболочкой (миелином), образованной наматыванием мезаксонов нейролеммоцитов при их вращении вокруг отростка нервной клетки. В миелиновой оболочке обнаружены липиды, щелочной белок миелина, маркерный белок S100 и др.

Высокое содержание липидов (почти 2/3 массы миелина) выявляется при обработке препаратов четырехокисью осмия, окрашивающей миелиновую оболочку в темно-коричневый цвет. По ходу миелинового волокна имеются сужения — узловые перехваты (перехваты Ранвье). Они соответствуют границе смежных нейролеммоцитов. Каждый межузловой сегмент оболочки волокна представлен одним нейролеммоцптом. Миелиновые волокна толще безмиелиновых. Скорость проведения нервного импульса по ним составляет 5-120 м/с, тогда как по безмиелиновым волокнам импульс проводится со скоростью 1-2 м/с.

Сложные взаимоотношения между нервными и глиальными клетками складываются при формировании чувствительных нервных окончаний (рецепторов) и двигательных нервных окончаний (эффекторов).

Нервные окончания — концевой аппарат нервных волокон, формирует межнейрональные контакты, или синапсы, рецепторные (чувствительные) окончания и двигательные (эффекторные) окончания.

Синапс (от synapsis — соединение) — специализированный для передачи нервных импульсов контакт между двумя нейронами или между нейроном и эффектором. Процессы возбуждения нейронов, возникновение импульсов и распространение их по отросткам связаны с изменениями в плазмолемме. Она является структурной основой возникновения и передачи потенциалов действия. Плазмолемма имеет существенные особенности строения и функции в участках, входящих в состав синапсов.

Межнейрональные синапсы бывают нескольких видов: аксосоматические (между аксоном одного нейрона и телом другого нейрона); аксодендритические (между аксоном одного нейрона и дендритом другого нейрона); аксоаксональные (между аксонами двух нейронов). Описаны также синапсы соматосоматические, дендродендритические и др.

Все синапсы по механизму передачи импульсов между нервными клетками подразделяются на 3 типа: синапсы с химической передачей, электротонические и смешанные синапсы. Типичный синапс с химической передачей состоит из пресинаптической и постсинаптической частей, а также синаптической щели. Пресинаптическая часть включает концевое расширение аксона, ограниченное пресинаптической мембраной. Специфическими структурами этой части являются синоптические пузырьки, содержащие нейромедиаторы. Пузырьки бывают со светлым и электронно-плотным содержимым и называются в связи с этим агранулярными и гранулярными.

По форме они подразделяются на круглые и уплощенные. На внутренней поверхности пресинаптической мембраны расположены конусовидные электронно-плотные образования — пресинаптические уплотнения. В цитоплазме пресинаптической части имеются митохондрии. Синаптическая щель размером 20-30 нм содержит филаменты, связывающие наружные слои плазмолеммы контактирующих нейронов.

Постсинаптическая часть в составе плазмолеммы второго нейрона имеет рецепторы к медиатору, который выделяется в синаптическую щель при деполяризации мембраны первого нейрона. Внутренняя поверхность постсинаптической мембраны характеризуется наличием электронно-плотного слоя цитоплазмы — постсинаптические уплотнения.

Схема строения синапса

Источник

Строение нервной ткани. Нервное волокно, виды нервных волокон.

Нервная ткань развивается из эктодермы, является основным компонентом нервной системы. Основными свойствами нервной ткани являются возбудимость и проводимость.

Нервная ткань состоит из нервных клеток (нейронов) и межклеточного вещества (нейроглии). Нейроны способны воспринимать, анализировать раздражение, приходить в состояние возбуждения, генерировать нервные импульсы и передавать их другим нейронам либо рабочим органам.

Нейроны представляют собой отростчатые клетки, размеры которых колеблются в значительных пределах. По форме нервные клетки также различны. Отростки являются проводниками нервных импульсов. Различают два вида отростков:

· аксон – длинный отросток, обеспечивает проведение импульса от нервной клетки к рабочему органу или другой клетке; каждая нервная клетка имеет только один аксон;

· дендрит – короткий, древовидно-ветвящийся отросток, воспринимает импульсы и проводит к телу нейрона; количество дендритов у разных нейронов различное.

Нейрон имеет типичное клеточное строение. В цитоплазме клеток присутствуют специфические органеллы:

· нейрофибриллы – участвуют в проведении нервного импульса;

· тигроидное (базофильное) вещество – представляет собой зернистость, образующую нерезко отграниченные глыбки, лежащие в теле клетки и дендритах. Оно меняется в зависимости от функционального состояния клетки. В условиях перенапряжения, травмы (перерезка отростков, отравление, кислородное голодание и др.) глыбки распадаются и исчезают. Этот процесс получил название хроматолиза, или тигролиза, т.е. растворения тигроидного вещества. По морфологическим изменениям базофильного вещества можно судить о состоянии нервных клеток в условиях патологии и эксперимента.

Нейрон является структурно-функциональной единицей нервной ткани. С помощью своих отростков он взаимодействует с другими нейронами, образуя рефлекторные дуги – нейронные цепи, из которых построена нервная система.

В организме человека нервный импульс обычно передается от одного нейрона к другому либо на рабочий орган не напрямую, а через химический посредник – медиатор.

Нейроны классифицируют по трем основным группам признаков: морфологическим, функциональным и биохимическим.

Морфологическая классификация (по особенностям строения):

ü по количеству отростков нейроны делятся на:

униполярные (с одним отростком) – встречаются в эмбриогенезе;

биполярные (с двумя отростками) – некоторые нейроны сетчатки глаза, нейроны спирального и вестибулярного ганглиев;

псевдоуниполярные (ложно униполярные) – к ним относятся все рецепторные нейроны спинальных и краниальных ганглиев. Аксон и дендрит начинается от общего выроста тела клетки с последующим Т-образным делением;

мультиполярные (имеют три и более отростка) – преобладают во всех отделах ЦНС и в вегетативных ганглиях периферической нервной системы;

ü по форме – описано до 80 вариантов нейронов (звездчатые, пирамидальные, грушевидные, веретеновидные и др.).

Функциональная классификация (в зависимости от выполняемой функции и места в рефлекторной дуге различают нейроны):

рецепторные (чувствительные, афферентные) – с помощью дендритов воспринимают воздействия внешней или внутренней среды, генерируют нервный импульс и передают его другим типам нейронов; встречаются только в спинальных ганглиях и чувствительных ядрах черепно-мозговых нервов;

эффекторные (эфферентные) – передают возбуждение на рабочие органы (мышцы или железы); располагаются в передних рогах спинного мозга и вегетативных нервных ганглиях;

вставочные (ассоциативные) – располагаются между рецепторными и эффекторными нейронами; по количеству их больше всего, особенно в ЦНС;

секреторные (нейроэндокриноциты) – специализированные нейроны, по своей функции напоминающие эндокринные клетки. Они синтезируют и выделяют в кровь нейрогормоны, расположены в гипоталамической области головного мозга; регулируют деятельность гипофиза, а через него и многие периферические эндокринные железы.

Читайте также:  Какие признаки можно считать существенными для понятия золото

Медиаторная классификация (по химической природе выделяемого медиатора):

холинергические (медиатор ацетилхолин);

аминергические (медиаторы – биогенные амины, например, норадреналин, серотонин, гистамин);

ГАМК-эргические (медиатор – гамма-аминомасляная кислота);

пептидергические (медиаторы – пептиды, например, опиодные пептиды, субстанция Р, холецистокинин и др.);

пуринергические (медиаторы – пуриновые нуклеотиды, например, аденозин) и др., а также нейроны, которые в качестве медиатора используют аминокислоты (глицин, глутамат, аспартат).

Нейроглия(межклеточное вещество) органически связана с нервными клетками, имеет клеточное строение и осуществляет трофическую, секреторную, защитную, разграничительную и опорную функцию. Она поддерживает постоянство среды вокруг нейронов. Клетки нейроглии делятся на две группы: макроглию и микроглию.

Макроглия. Клетки макроглии бывают трех типов:

· эпендимоциты – выстилают каналы и желудочки спинного и головного мозга, по которым циркулирует спинномозговая жидкость (ликвор). В желудочках мозга находятся сосудистые сплетения. Они покрыты специализированными секреторными эпендимоцитами, участвующими в образовании ликвора.

· астроциты – различают протоплазматические и волокнистые астроциты. Протоплазматические астроциты имеют короткие толстые отростки. Они расположены в сером веществе мозга, выполняют разграничительную и трофическую функции. Волокнистые астроциты находятся в белом веществе, имеют многочисленные тонкие длинные отростки, которые оплетают кровеносные сосуды мозга, образуя периваскулярные глиальные пограничные мембраны. Их отростки также изолируют синапсы. Таким образом, они изолируют нейроны и кровеносные сосуды и участвуют в образовании гематоэнцефалического барьера, обеспечивают обмен веществ между кровью и нейронами. Они также участвуют в образовании оболочек мозга и выполняют опорную функцию (образуют каркас мозга).

· олигодендроциты – имеют мало отростков, окружают нейроны, выполняя трофическую (участие в питании нейронов) и разграничительную функции. Олигодендроциты, расположенные вокруг тел нейронов, называются мантийными глиоцитами. Олигодендроциты, расположенные в периферической нервной системе и образующие оболочки вокруг отростков нейронов, называют леммоцитами (шванновскими клетками).

Микроглия (глиальные макрофаги). Образуются из моноцитов крови. Покоящиеся микроглиоциты имеют короткие ветвящиеся отростки. Под действием микроорганизмов и продуктов распада нервной ткани они активируются, теряют отростки, округляются и превращаются в «зернистые шары» (реактивная микроглия). При этом они, как макрофаги, уничтожают разрушенные нервные клетки и глиальные клетки.

Нервные волокна – это отростки нейронов, покрытые глиальными оболочками. Отростки нейронов лежат внутри нервных волокон и называются осевыми цилиндрами. Их окружают глиальные клетки – олигодендроциты, которые здесь называются леммоцитами (оболочечными клетками), или шванновскими клетками.

По гистологическому строению нервные волокна бывают миелиновые (мякотные) и безмиелиновые (безмякотные).

Миелиновые нервные волокна имеют оболочку из двух слоев: внутренний называется миелиновым (мякотным) и представлен липопротеидным веществом – миелином; наружный – шванновскими клетками и называется нейролеммой. Миелин служит для защиты, питания и изоляции нервных волокон. Через равные промежутки миелиновая оболочка прерывается, образуя перехваты Ранвье. Такие волокна образуют белое вещество спинного и головного мозга, входят в периферические нервы.

Безмиелиновые (безмякотные) нервные волокна преимущественно входят в состав вегетативной нервной системы. Оболочка состоит из клеток нейроглии – шванновских клеток, плотно прилегающих друг к другу.

По функции нервные волокна бывают двигательные и чувствительные.

Нервные волокна заканчиваются нервными окончаниями. По функции нервные окончания делятся на:

· рецепторы – чувствительные нервные окончания образованы концевыми разветвлениями дендритов чувствительных нейронов. Они воспринимают раздражения из внешней среды – экстерорецепторы и из внутренних органов – интерорецепторы.

· эффекторы – двигательные нервные окончания являются концевыми разветвлениями аксонов двигательных клеток, посредством которых импульс передается на ткани рабочих органов. Двигательные нервные окончания скелетных мышц называются моторными бляшками.

Особую группу нервных окончаний образуют соединения (контакты) между нервными клетками – межнейрональные синапсы.

Источник

Особенности строения и виды нервных волокон

Выделяют 2 вида нервных волокон.

Миелиновые нервные волокна— покрыты слоями шванновских клеток, которые местами образуют перехваты Ранвье (участки без миелина) через каждые 1 мм. Продолжительность перехвата Ранвье 1 мкм. Миелиновая оболочка выполняет трофическую и изолирующую функции (высокое сопротивление). Участки, покрытые миелином не обладают электрогенными свойствами. Ими обладают перехваты Ранвье. Возбуждение возникает в ближайшем к месту действия раздражителя перехвата Ранвье. В перехватах Ранвье высокая плотность Nа-каналов, поэтому в каждом перехвате Ранвье происходит усиление нервных импульсов.

Перехваты Ранвье выполняют функцию ретрансляторов (генерируют и усиливают нервные импульсы).

Механизм проведения возбуждения по нервному волокну

При действии раздражителя имеется разность потенциалов между наружной и внутренней поверхностями ткани (участки несущие различные заряды). Между этими участками возникает электрический ток (движение ионов Nа+). Внутри нервного волокна возникает ток от положительного полюса к отрицательному полюсу, т. е. ток направлен от возбужденного участка к невозбужденному. Этот ток выходит через невозбужденный участок и вызывает его перезарядку. На наружной поверхности нервного волокна ток идет от невозбужденного участка к возбужденному. Этот ток не изменяет состояние возбужденного участка, т. к. он находится в состоянии рефрактерности.

Особенности проведения возбуждения по миелиновым и безмиелиновым нервным волокнам:

2. безмиелиновые волокна— поверхность обладает электрогенными свойствами на всем протяжении. Поэтому малые круговые токи возникают на расстоянии в несколько микрометров. Возбуждение имеет вид постоянно бегущей волны.

Этот способ менее выгоден: большие затраты энергии (на работу Nа-К-насоса), меньшая скорость проведения возбуждения.

Классификация нервных волокон

Нервные волокна классифицируются по:

1. длительности потенциала действия;

2. строению (диаметру) волокна;

3. скорости проведения возбуждения.

Выделяют следующие группы нервных волокон:

Синапсы ЦНС

Синапс – это морфофункциональное образование ЦНС, которое обеспечивает передачу сигнала с нейрона на другой нейрон или с нейрона на эффекторную клетку (мышечное волокно, секреторную клетку).

Cтруктура синапса:

1) пресинаптическая мембрана (электрогенная мембрана в терминале аксона, образует синапс на мышечной клетке);2) постсинаптическая мембрана (электрогенная мембрана иннервируемой клетки, на которой образован синапс);3) синаптическая щель (пространство между пресинаптической и постсинаптической мембраной, заполнена жидкостью, которая по составу напоминает плазму крови).

2) Существует несколько классификаций синапсов.

1) центральные синапсы;2) периферические синапсы.

Центральные синапсы лежат в пределах центральной нервной системы, а также находятся в ганглиях вегетативной нервной системы. Центральные синапсы – это контакты между двумя нервными клетками, причем эти контакты неоднородны и в зависимости от того, на какой структуре первый нейрон образует синапс со вторым нейроном, различают:

1) аксосоматический, образованный аксоном одного нейрона и телом другого нейрона;2) аксодендритный, образованный аксоном одного нейрона и дендритом другого;3) аксоаксональный (аксон первого нейрона образует синапс на аксоне второго нейрона);4) дендродентритный (дендрит первого нейрона образует синапс на дендрите второго нейрона).

Различают несколько видов периферических синапсов:

1) мионевральный (нервно-мышечный), образованный аксоном мотонейрона и мышечной клеткой;2) нервно-эпителиальный, образованный аксоном нейрона и секреторной клеткой.

Функциональная классификация синапсов:1) возбуждающие синапсы;2) тормозящие синапсы.

По механизмам передачи возбуждения в синапсах:1) химические;2) электрические.

Особенность химических синапсов заключается в том, что передача возбуждения осуществляется при помощи особой группы химических веществ – медиаторов.

Читайте также:  Предписывающие знаки их назначение общий признак предписывания

Различают несколько видов химических синапсов:1) холинэргические. В них происходит передача возбуждения при помощи ацетилхолина;2) адренэргические. В них происходит передача возбуждения при помощи трех катехоламинов;3) дофаминэргические. В них происходит передача возбуждения при помощи дофамина;4) гистаминэргические. В них происходит передача возбуждения при помощи гистамина;5) ГАМКэргические. В них происходит передача возбуждения при помощи гаммааминомасляной кислоты, т. е. развивается процесс торможения.

Особенность электрических синапсов заключается в том, что передача возбуждения осуществляется при помощи электрического тока. Таких синапсов в организме обнаружено мало.

Синапсы имеют ряд физиологических свойств:1) клапанное свойство синапсов, т. е. способность передавать возбуждение только в одном направлении с пресинаптической мембраны на постсинаптическую;2) свойство синаптической задержки, связанное с тем, что скорость передачи возбуждения снижается;3) свойство потенциации (каждый последующий импульс будет проводиться с меньшей постсинаптической задержкой). Это связано с тем, что на пресинаптической и постсинаптической мембране остается медиатор от проведения предыдущего импульса;4) низкая лабильность синапса (100–150 имульсов в секунду).

Скорость проведения возбуждения через синапс намного меньше, чем по нервному волокну, так как здесь тратится время на активацию пресинаптической мембраны, переход через нее кальция, выделение ацетилхолина в синаптическую щель, деполяризацию постсинаптической мембраны, развитие ПКП.Синаптическая передача возбуждения имеет рад свойств:

1) Наличие медиатора в пресинаптической части синапса;2) Относительная медиаторная специфичность синапса, т. е. каждый синапс имеет свой доминирующий медиатор;3) Переход постсинаптической мембраны под влиянием медиаторов в состояние де- или гиперполяризации;4) Возможность действия специфических блокирующих агентов на рецептирующие структуры постсинаптической мембраны;5) Увеличение длительности постсинаптического потенциала мембраны при подавлении действия ферментов, разрушающих синаптической медиатор;6) Развитие в постсинаптической мембране ПСП из миниатюрных потенциалов, обусловленных квантами медиатора;7) Зависимость длительности активной фазы действия медиатора в синапсе от свойств медиатора;8) Односторонность проведения возбуждения;9) Наличие хемочувствительных рецепторуправляемых каналов постсинаптической мембраны;10) Увеличение выделения квантов медиатора в синаптическую щель пропорционально частоте приходящих по аксону импульсов;11) Зависимость увеличения эффективности синаптической передачи от частоты использования синапса («эффект тренировки»);12) Утомляемость синапса, развивающаяся в результате длительного высокочастотного его стимулирования. В этом случае утомление может быть обусловлено истощением и несвоевременным синтезом медиатора в пресинаптической части синапса или глубокой, стойкой деполяризацией постсинаптической мембраны (пессимальное торможение).

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Источник

Морфологические особенности нейрона и нервных волокон

Лекция 4

ФИЗИОЛОГИЧЕСКИЕ СВОЙСТВА НЕРВОВ И НЕРВНЫХ ВОЛОКОН

План:

1. Морфологические особенности нейрона и нервных волокон. 1

2. Физиология нейрона. 3

3. Физиология нервных волокон. 9

4. Объединения нейронов. 12

Морфологические особенности нейрона и нервных волокон

Центральная нервная система координирует деятельность всех органов и систем, обеспечивает эффективное приспособление организма к изменениям окружающей среды, формирует целенаправленное поведение. Она представлена спинным, продолговатым, средним, промежуточным мозгом, варолиевым мостом, мозжечком, базальными ганглиями и корой полушарий головного мозга. Каждая из этих структур имеет морфологическую и функциональную специфику. Но у всех структур, наряду с этим, есть ряд общих свойств и функций, к которым относятся: нейронное строение; синаптическая связь между нейронами; образование локальных сетей из нейронов, реализующих специфическую функцию; способность нейронов всех структур к восприятию, обработке, хранению и передаче информации и т.д.

Структурно-функциональной единицей нервной системы является нейрон – специализированная клетка, способная принимать, обрабатывать, кодировать, передавать и хранить информацию, реагировать на раздражения, устанавливать контакты с другими нейронами и клетками органов. Уникальными особенностями нейронов является способность генерировать электрические разряды и наличие специализированных окончаний – синапсов, служащих для передачи информации.

Нейрон(нервная клетка, нейроцит) состоит из клеточного тела (перикарион, сомы) и отростков, обеспечивающих проведение нервных импульсов – дендритов, приносящих импульсы к телу нейрона, и аксона (нейрита), несущего импульсы от тела нейрона. Функционально в нейроне выделяют три части – воспринимающую, интегративную и передающую. К воспринимающей части относят дендриты и перикарион, к интегративной –перикарион (сому) и аксонный холмик, а к передающей – аксонный холмик и аксон.

Аксон, заключенный в глиальную оболочку, называется нервным волокном. Совокупность нервных волокон образует нервные пучки, совокупность которых, в свою очередь, формирует нервный ствол или нерв. Дендрит, одетый в глиальную оболочку, также называется нервным волокном.

Все аксоны покрыты глиальной оболочкой, однако эта оболочка устроена по-разному – в одних случаях она содержит миелин, а в других – нет. В связи с этим все нервные волокна подразделяются на два вида – миелиновые (миелинизированные, или мякотные волокна) и безмиелиновые (немиелизинированные, безмякотные волокна). Диаметр миелиновых волокон колеблется от 1 до 25 мкм, а безмиелиновых – от 0,5 до 2 мкм.Оба вида нервных волокон состоят из центрально лежащего отростка нейрона – аксона. В составе нервного волокна он получает название осевого цилиндра. Цилиндр окружен оболочкой, которая образована совокупностью клеток олигодендроглии. В периферической нервной системе эти клетки называются леммоцитами, или швановскими клетками.

Безмиелиновые нервные волокна у взрослого располагаются преимущественно в составе вегетативной нервной системы и характеризуются сравнительно низкой скоростью проведения нервных импульсов (0,5-2 м/с). Они образуются путем погружения осевого цилиндра (аксона) в цитоплазму леммоцитов, располагающихся в виде тяжей. При этом плазмолемма леммоцита прогибается, окружая аксон, и образует дубликатуру – мезаксон. Нередко в цитоплазме одного леммоцита могут находиться до 10-20 осевых цилиндров. Такое волокно напоминает электрический кабель и поэтому называется волокном кабельного типа. Поверхность волокна покрыта базальной мембраной.

Миелиновые нервные волокна –это большая часть всех нервных волокон. Онивстречаются в ЦНС и в периферической нервной системе и характеризуются высокой скоростью проведения нервных импульсов (5-120 м/с). Миелиновые волокна содержат осевые цилиндры большего диаметра.

Образование миелиновой оболочкив периферической нервной системепроисходит следующим образом. Погружение осевого цилиндра в леммоцит сопровождается формированием длинного мезаксона, который начинает вращаться вокруг аксона, образуя первые рыхло расположенные витки миелиновой оболочки. По мере увеличения числа витков (пластин) в процессе созревания миелина они располагаются все более плотно и частично сливаются. По длине волокна миелиновая оболочка имеет прерывистый ход, благодаря чему формируются узловые перехваты, или перехваты Равнье.

Узловые перехваты (Ранвье)расположены на границе соседних леммоцитов. В этих участках миелиновая оболочка отсутствует, а аксон прикрыт лишь отростками соседних леммоцитов. Узловые перехваты повторяются по ходу миелинового волокна с определенными интервалами. В области узлового перехвата аксон часто расширяется, а в его плазмолемме присутствуют многочисленные натриевые каналы (которые отсутствуют вне перехватов под миелиновой оболочкой). Перехваты Ранвье играют важную роль в процессе проведения возбуждения по нервному волокну как в ЦНС, так и в периферической нервной системе.

Физиология нейрона

Функции нейрона как целого образования – это обеспечение информационных процессов в ЦНС, в том числе с помощью нейромедиаторов. Нейроны как специализированные клетки осуществляют прием, кодирование, обработку, хранение и передачу информации. Нейроны формируют управляющие команды для различных внутренних органов и для скелетных мышц, а также обеспечивают реализацию всех форм психической деятельности. Все это обеспечивается за счет уникальной способности нейрона генерировать электрические разряды и передавать информацию с помощью специализированных окончаний – синапсов. Однако реализация всех функций нейрона возможна лишь при совместной работе нейронов. Поэтому решающим моментом в деятельности нейрона является его способность к генерации потенциалов действия, а также его способность воспринимать потенциалы действия и медиаторы от других нейронов и передавать необходимую информацию другим нейронам. Все это особенно наглядно проявляется в том случае, когда нейрон является компонентом нейронных объединений, в частности – составной частью рефлекторной дуги. Реализация информационной функции происходит с участием всех отделов нейрона – дендритов, перикариона и аксона. При этом дендриты вместе с перикарионом специализируются на восприятии информации, аксоны (вместе с аксонным холмиком перикариона) – на передаче информации, а перикарион на принятии решения. Кроме того, тело нейрона выполняет трофическую функцию относительно своих отростков и их синапсов. Перерезка аксона или дендрита ведет к гибели отростков, лежащих дистальнее перерезки, а, следовательно, и синапсов этих отростков. Сома обеспечивает также рост дендритов и аксона.

Читайте также:  Слова называющие признаки предметов это

У большинства нейронов величина мембранного потенциала достигает 50-70 мВ. У фоновоактивных нейронов, т.е. обладающих спонтанной активностью, величина мембранного потенциала периодически уменьшается. Однако большинство нейронов генерируют потенциалы действия лишь в ответ на воздействие сенсорного стимула. Пороговый потенциал в среднем для перикариона составляет примерно 20-35 мВ, для дендритов – он еще выше, в области аксонного холмика он составляет всего 5-10 мВ. Таким образом, наиболее возбудимым участком перикариона является аксонный холмик. Потенциал действия по своей форме является пикообразным. Для него характерна кратковременность спайка (1-3 мс), выраженность следовой гиперполяризации, в результате чего нередко возбудимость нейрона понижается. Длительность абсолютной рефрактерной фазы для нейронов – сравнительно небольшая (в пределах 2-3 мс), что обеспечивает сравнительно высокий уровень лабильности нейронов. Вместе с тем, для нейронов характерна высокая утомляемость, что указывает на относительно ограниченные возможности нейронов к восстановлению. В то же время следует помнить, что большая продолжительность жизни нейрона, связанная с отсроченным наступлением апоптоза, в определенной степени и обеспечивается способностью нейронов заблаговременно прекращать свою деятельность, не допуская активацию апоптоза.

Относительно такого свойства нейрона как проводимость следует подчеркнуть, что все его компоненты – перикарион, дендриты и аксон способны к проведению импульса. При этом для дендрита и, особенно, для аксона – проведение возбуждения является основной функцией. Как правило, нейрон динамически поляризован, т.е. способен проводить нервный импульс только в одном направлении – от дендрита через тело клетки к аксону. Это явление называется ортодромным распространением возбуждения. В отдельных случаях возможно антидромное распространение возбуждения, т.е. от аксона к перикариону и дендритам.

С функциональной точки зрения нейрон может находиться в трех основных состояниях: в состоянии покоя, в состоянии активности или возбуждения и в состоянии торможения.

В состоянии покоянейрон имеет стабильный уровень мембранного потенциала. В любой момент нейрон готов возбудиться, т.е. генерировать потенциал действия, либо перейти в состояние торможения.

В состоянии активности,т.е. при возбуждении нейрон генерирует потенциал действия или чаще – группу потенциалов действия (серия ПД, пачка ПД). Частота следования потенциалов действия внутри данной серии ПД, длительность этой серии, а также интервалы между последовательными сериями – все эти показатели широко варьируют.

Для некоторых нейронов активное состояние возникает спонтанно, т.е. автоматически, причем, чаще всего автоматия нейрона проявляется периодической генерацией серии импульсов. Примером таких нейронов-пейсмекеров, т.е. водителей ритма являются нейроны дыхательного центра продолговатого мозга. Нередко такие нейроны называют фоновоактивными нейронами. По характеру реакции на приходящие импульсы они делятся на тормозные и возбуждающие. Тормозные нейроны урежают свою фоновую частоту разрядов в ответ на внешний сигнал, а возбуждающие – увеличивают частоту фоновой активности.

Существует как минимум три вида фоновой активности нейронов – непрерывно-аритмичный, пачечный и групповой.

Непрерывно-аритмичный видактивности проявляется в том, что фоновоактивные нейроны генерируют импульсы непрерывно с некоторым замедлением или увеличением частоты разрядов. Такие нейроны обычно обеспечивают тонус нервных центров. Фоновоактивные нейроны имеют большое значение в поддержании уровня возбуждения коры и других структур мозга. Число фоновоактивных нейронов увеличивается в состоянии бодрствования.

Пачечный тип активностизаключается в том, что нейроны выдают группу импульсов с коротким межимпульсным интервалом, после этого наступает период молчания, а затем вновь возникает пачка импульсов. Обычно межимпульсные интервалы в пачке равны приблизительно 1-3 мс, а интервал между пачками ПД составляет 15-120 мс. Считается, что такой тип активности создает условия для проведения сигналов при снижении функциональных возможностей проводящих или воспринимающих структур мозга.

Групповая формаактивности характеризуется апериодическим появлением в фоне группы импульсов (межимпульсные интервалы составляют от 3 до 30 мс), сменяющихся периодом молчания.

Состояние торможенияпроявляется в том, что фоновоактивный нейрон или нейрон, получающий возбуждающее воздействие извне, прекращает свою импульсную активность. В состояние торможения нейрон может переходить и из состояния покоя. Во всех случаях в основе торможения лежит явление гиперполяризации нейрона или активное прекращение поступающей импульсации от других нейронов.

Принятая дендритами входящая информация перерабатывается в теле нейрона, запуская серию метаболических процессов. Часть этих процессов необходима для поддержания жизнедеятельности нейрона. Другая часть обменных процессов преобразуется в ответ в виде генерации потенциалов действия, идущих к органу-мишени или к другому нейрону в виде серий импульсов определенной частоты. Третья часть процессов необходима для создания в нейроне своеобразного буфера для обеспечения постоянства выхода потенциалов действия из нейрона при количественных колебаниях входа. При стойком повышении количества принимаемых импульсов аккумулируемый запас становится чрезмерным. Соответственно, аксон повышает частоту своей импульсации, но не постепенно, а скачкообразно, как бы перескакивая на новый уровень активности, такой же относительно постоянный, как и предыдущий. Если перегрузка не ликвидируется, то возможны и дальнейшие скачкообразные увеличения частоты импульсации, а затем и повышение мощности импульсов. При недостатке поступающих стимулов в первую очередь исчерпывается аккумулированный запас – нейрон пытается сохранить постоянство режима ответов, т.е. выходной импульсации. При стойком и значительном снижении поступления «запасы» исчерпываются, и возникают скачкообразные изменения частоты аксональных импульсов, только в обратном порядке – в сторону снижения. Снижение количества входных стимулов ниже некоторого критического уровня приводит к тому, что нейрон не только не может организовать ответную реакцию, но и не располагает ресурсами для полноценного обеспечения собственной жизнедеятельности. Полное блокирование входных импульсов приводит к гибели нейрона. Изложенная гипотеза в определенной степени согласуется с представлением Г. Сорохтина (60-е годы 20 века) о негативном влиянии на деятельность нейронов дефицита поступающей информации (гипотеза о дефиците возбуждения).

Источник