Среднее квадратическое отклонение значений признака равно

Дисперсия, среднеквадратичное (стандартное) отклонение, коэффициент вариации в Excel

Из предыдущей статьи мы узнали о таких показателях, как размах вариации, межквартильный размах и среднее линейное отклонение. В этой статье изучим дисперсию, среднеквадратичное отклонение и коэффициент вариации.

Дисперсия

Дисперсия случайной величины – это один из основных показателей в статистике. Он отражает меру разброса данных вокруг средней арифметической.

Сейчас небольшой экскурс в теорию вероятностей, которая лежит в основе математической статистики. Как и матожидание, дисперсия является важной характеристикой случайной величины. Если матожидание отражает центр случайной величины, то дисперсия дает характеристику разброса данных вокруг центра.

Формула дисперсии в теории вероятностей имеет вид:

То есть дисперсия — это математическое ожидание отклонений от математического ожидания.

На практике при анализе выборок математическое ожидание, как правило, не известно. Поэтому вместо него используют оценку – среднее арифметическое. Расчет дисперсии производят по формуле:

s 2 – выборочная дисперсия, рассчитанная по данным наблюдений,

X – отдельные значения,

– среднее арифметическое по выборке.

Стоит отметить, что у такого расчета дисперсии есть недостаток – она получается смещенной, т.е. ее математическое ожидание не равно истинному значению дисперсии. Подробней об этом здесь. Однако при увеличении объема выборки она все-таки приближается к своему теоретическому аналогу, т.е. является асимптотически не смещенной.

Простыми словами дисперсия – это средний квадрат отклонений. То есть вначале рассчитывается среднее значение, затем берется разница между каждым исходным и средним значением, возводится в квадрат, складывается и затем делится на количество значений в данной совокупности. Разница между отдельным значением и средней отражает меру отклонения. В квадрат возводится для того, чтобы все отклонения стали исключительно положительными числами и чтобы избежать взаимоуничтожения положительных и отрицательных отклонений при их суммировании. Затем, имея квадраты отклонений, просто рассчитываем среднюю арифметическую. Средний – квадрат – отклонений. Отклонения возводятся в квадрат, и считается средняя. Теперь вы знаете, как найти дисперсию.

Расчет дисперсии в Excel

Генеральную и выборочную дисперсии легко рассчитать в Excel. Есть специальные функции: ДИСП.Г и ДИСП.В соответственно.

В чистом виде дисперсия не используется. Это вспомогательный показатель, который нужен в других расчетах. Например, в проверке статистических гипотез или расчете коэффициентов корреляции. Отсюда неплохо бы знать математические свойства дисперсии.

Свойства дисперсии

Свойство 1. Дисперсия постоянной величины A равна (нулю).

Свойство 2. Если случайную величину умножить на постоянную А, то дисперсия этой случайной величины увеличится в А 2 раз. Другими словами, постоянный множитель можно вынести за знак дисперсии, возведя его в квадрат.

Свойство 3. Если к случайной величине добавить (или отнять) постоянную А, то дисперсия останется неизменной.

Свойство 4. Если случайные величины X и Y независимы, то дисперсия их суммы равна сумме их дисперсий.

Свойство 5. Если случайные величины X и Y независимы, то дисперсия их разницы также равна сумме дисперсий.

Среднеквадратичное (стандартное) отклонение

Если из дисперсии извлечь квадратный корень, получится среднеквадратичное (стандартное) отклонение (сокращенно СКО). Встречается название среднее квадратичное отклонение и сигма (от названия греческой буквы). Общая формула стандартного отклонения в математике следующая:

На практике формула стандартного отклонения следующая:

Как и с дисперсией, есть и немного другой вариант расчета. Но с ростом выборки разница исчезает.

Расчет cреднеквадратичного (стандартного) отклонения в Excel

Для расчета стандартного отклонения достаточно из дисперсии извлечь квадратный корень. Но в Excel есть и готовые функции: СТАНДОТКЛОН.Г и СТАНДОТКЛОН.В (по генеральной и выборочной совокупности соответственно).

Среднеквадратичное отклонение имеет те же единицы измерения, что и анализируемый показатель, поэтому является сопоставимым с исходными данными.

Читайте также:  Сахарный диабет признаки у кота

Коэффициент вариации

Значение стандартного отклонения зависит от масштаба самих данных, что не позволяет сравнивать вариабельность разных выборках. Чтобы устранить влияние масштаба, необходимо рассчитать коэффициент вариации по формуле:

По нему можно сравнивать однородность явлений даже с разным масштабом данных. В статистике принято, что, если значение коэффициента вариации менее 33%, то совокупность считается однородной, если больше 33%, то – неоднородной. В реальности, если коэффициент вариации превышает 33%, то специально ничего делать по этому поводу не нужно. Это информация для общего представления. В общем коэффициент вариации используют для оценки относительного разброса данных в выборке.

Расчет коэффициента вариации в Excel

Расчет коэффициента вариации в Excel также производится делением стандартного отклонения на среднее арифметическое:

Коэффициент вариации обычно выражается в процентах, поэтому ячейке с формулой можно присвоить процентный формат:

Коэффициент осцилляции

Еще один показатель разброса данных на сегодня – коэффициент осцилляции. Это соотношение размаха вариации (разницы между максимальным и минимальным значением) к средней. Готовой формулы Excel нет, поэтому придется скомпоновать три функции: МАКС, МИН, СРЗНАЧ.

Коэффициент осцилляции показывает степень размаха вариации относительно средней, что также можно использовать для сравнения различных наборов данных.

Таким образом, в статистическом анализе существует система показателей, отражающих разброс или однородность данных.

Ниже видео о том, как посчитать коэффициент вариации, дисперсию, стандартное (среднеквадратичное) отклонение и другие показатели вариации в Excel.

Источник

6. Формула для вычисления дисперсии.
Среднее квадратическое отклонение. Коэффициент вариации

В первой части урока мы рассмотрели размах вариации, среднее линейное отклонение и дисперсию, и продолжение темы в заголовке. Многие из этих показателей фигурируют в теории вероятностей, и если вы зашли с поисковика именно за ними, то сразу ссылка на нужную статью: Дисперсия дискретной случайной величины – там же всё остальное.

Ну а здесь на повестке дня Математическая статистика (организационный урок для «чайников»), и мы продолжаем изучать показатели вариации:

Всё с формулами, примерами решений и техникой рациональных вычислений.

И снова о дисперсии.

На предыдущем занятии мы рассчитывали дисперсию по определению:
– для несгруппированных данных и
– для дискретного либо интервального вариационного ряда.

Если известно, генеральная ли нам дана совокупность или выборочная, то хорошим тоном считается поставить подстрочные индексы: либо .

Расчёт дисперсии по определению прост и реально используется на практике, но существует ещё более простой и удобный способ вычисленияпо формуле, которую несложно вывести из определения:

– дисперсия равна разности средней арифметической квадратов всех вариант статистической совокупности и квадрата средней самих этих вариант.

ОСМЫСЛЕННО повторяем ВСЛУХ и вникаем! … Карл украл у Клары кораллы, а Клара украла у Карла кларнет 🙂

Если что-то не очень понятно, то сейчас всё станет на свои места:

Для несгруппированных вариант выборочной совокупности формула детализируется следующим образом:

и для готового вариационного ряда – так:
, где – кратные (одинаковые) варианты дискретного ряда либо середины интервалов интервального ряда, а – соответствующие частоты.

Для генеральной дисперсии формулы те же, только с буквами вместо . Во многих случаях удобно использовать просто значок суммирования – без переменной-«счётчика», поскольку в контексте той или иной задачи и так понятно, что суммируется.

И начнём мы со знакомой подопытной задачи:

В результате 10 независимых измерений получены опытные данные, которые представлены в таблице:

Это данные из Примера 13, и на этот раз нам требуется вычислить дисперсию с помощью формулы. Напоминаю, что там мы её рассчитали по определению и получили результат , таким образом, ответ известен заранее, и это всегда круто. Всегда, когда он правильный.

Решение: используем формулу .
Для этого нужно найти выборочную среднюю, повторим действие: ,
вычислить квадраты всех вариант:

и их сумму:
Результаты вычислений удобно заносить в таблицу:

Осталось применить формулу:
, что и требовалось увидеть.

Читайте также:  Наличие института гражданства признак государства

Ответ:

Теперь случай сформированного вариационного ряда. В Примере 14 мы потренировались на дискретном ряде, и сейчас очередь интервального:

С целью изучения вкладов в Сбербанке города проведено выборочное исследование, в результате которого получены следующие данные:

Вычислить выборочную дисперсию и среднее квадратическое отклонение, оценить соответствующие показатели генеральной совокупности.

Автор задачи заботливо подсчитал объем выборки , но не «закрыл» крайние интервалы. Такая вещь уже встречалась, и решение мы начинаем с этого закрытия. Поскольку длины внутренних интервалов составляют д.е., то логично рассмотреть такую же длину и по краям, то бишь, интервалы от 200 до 400 и от 1000 до 1200 денежных единиц.

…Возможно, у вас возник вопрос, а как быть, если даны интервалы разной длины? В этом случае принимаем за «эталон» среднюю длину известных интервалов.

Для расчёта числовых характеристик перейдём к дискретному вариационному ряду, выбрав в качестве вариант середины интервалов, которые здесь видны устно:

В тяжёлых случаях суммируем концы интервалов и делим их пополам, например: .

Кроме того, варианты целесообразно уменьшить в 1000 раз, поскольку в ходе дальнейших вычислений будут получаться гигантские числа. С современными вычислительными мощностями, это, конечно, не проблема, но смотреться будет некрасиво.

Сначала вычислим выборочную среднюю. Этот алгоритм уже обкатан: находим произведения , их сумму:

и по соответствующей формуле:
тыс. д.е. или 780 д.е. – средний размер вклада.

Примечание: далее для компактной записи я буду использовать просто значок – без переменной-«счётчика».

Теперь дисперсия. Её никто не запрещает рассчитать по определению , но заметьте, насколько легче формула – для её применения всего-то лишь нужно рассчитать произведения и их сумму (правый столбец таблицы). Несмотря на то, что многие читатели уже освоили технику вычислений в Экселе, я продолжу записывать ролики – мало ли, кто что запамятовал:

Итак, по формуле вычисления дисперсии, получаем:
тыс. д.е. в квадрате (т.к. по определению, дисперсия – есть величина квадратичная).

И, чтобы вернуться в размерность задачи, из дисперсии следует извлечь квадратный корень:
тыс. д.е. или 240 денежных единиц. Полученный показатель называется

среднее квадратическое отклонение

Или стандартное отклонение. Оно обозначается греческой буквой «сигма», и коль скоро, у нас выборочная совокупность, то добавляем соответствующий подстрочный индекс:

– выборочное среднее квадратическое отклонение.

Чем меньше стандартное отклонение (и дисперсия), тем меньше вариация – тем бОльшее количество вариант находится вблизи выборочной средней. Но у нас, как нетрудно «прикинуть на глазок», разброс довольно-таки велик – значительное количество вкладов расположено далековато от , и поэтому значение получилось немалым.

Следующая часть задачи состоит в том, чтобы корректно оценить генеральную дисперсию и генеральное среднее квадратическое отклонение .

В 1-й части урока я рассказал о том, что выборочная дисперсия представляет собой смещённую оценку генеральной дисперсии. Это означает, что если мы будем проводить неоднократные выборки из той же генеральной совокупности, то полученные значения будут систематически занижено оценивать . Обращаю ваше внимание, что это не значит, что будет всегда меньше, чем .

И поэтому выборочную дисперсию, как намекает условие, нужно поправить:
исправленная выборочная дисперсия

и, соответственно:
или 240,30 д.е. – исправленное среднее квадратическое отклонение.

и – это уже несмещённые оценки генеральной дисперсии и генерального стандартного отклонения соответственно.

Ввиду большого объёма выборки (более 100 вариант) этой поправкой можно пренебречь, но всё же мы не будем «разбрасываться» 30 «копейками».

Ответ: ; в качестве оценки соответствующих генеральных показателей принимаем и .

Рассмотренные выше показатели (размах вариации, среднее линейное отклонение, дисперсия, стандартное отклонение) входят в группу абсолютных показателей вариации, которые обладают рядом неудобств. Так, если в прорешанной задаче не уменьшать варианты в 1000 раз, то дисперсия получится в миллион раз больше! Да-да, не , а . И возникает естественное желание привести результаты к некому единому стандарту.

Читайте также:  Признаки прорезывания жевательных зубов у ребенка

Для этого существуют показатели относительные, и самым известным из них является

коэффициент вариации

– это отношение стандартного отклонения к средней, выраженное в процентах:

И вот теперь совершенно без разницы, в д.е. мы считали:

или в тысячах д.е.:

Примечание: на практике часто считают именно через , но для оценки коэффициента вариации всей генеральной совокупности, конечно же, корректнее использовать исправленное стандартное отклонение .

В статистике существует следующий эмпирический ориентир:

– если показатель вариации составляет примерно 30% и меньше, то статистическая совокупность считается однородной. Это означает, что большинство вариант находится недалеко от средней, и найденное значение хорошо характеризует центральную тенденцию совокупности.

– если показатель вариации составляет существенно больше 30%, то выборка неоднородна, то есть, значительное количество вариант находятся далеко от , и выборочная средняя плохо характеризует типичную варианту. В таких случаях целесообразно рассмотреть квартили, децили, а иногда и перцентили, которые делят вариационный ряд на части, и для каждого участка рассчитать свои показатели. Но это уже немного дебри статистики.

Другое преимущество относительных показателей – это возможность сравнивать разнородные статистические совокупности. Например, множество слонов и множество хомячков. Совершенно понятно, что дисперсия веса слонов по отношению к дисперсии веса хомяков будет просто конской, и их сопоставление не имеет смысла. Но вот анализ коэффициентов вариации веса вполне осмыслен, и может статься, что у слонов он составляет 10%, а у хомячков 40% (пример, конечно, условный). Это говорит о сбалансированном питании и размеренной жизни слонов. А вот хомяки там, то носятся с голодухи по полям, то отъедаются и спят в норах, и поэтому среди них есть много худощавых и много упитанных особей 🙂

Кроме коэффициента вариации, существуют и другие относительные показатели, но в реальных студенческих работах они почти не встречаются, и поэтому я не буду их рассматривать в рамках данного курса.

И сейчас, конечно же, задачки для самостоятельного решения:

Пример 17, на отработку терминов и формул:

а) Стандартное отклонение выборочной совокупности равно 5, а средний квадрат её вариант – 250. Найти выборочную среднюю.

б) Определите среднее квадратическое отклонение, если известно, что средняя равна 260, а коэффициент вариации составляет 30%.

и Пример 18, творческий:

Производство стальных труб на предприятии (тонн) в 1-м полугодии составило:

Определить:
– среднемесячный объем производства;
– среднее квадратическое отклонение;
– коэффициент вариации.

Сделать краткие содержательные выводы. – Да, это тоже типичный пункт статистической задачи!

Обратите внимание, что здесь не понятно, выборочной ли считать эту совокупность или генеральной. И в таких случаях лучше не заниматься домыслами, просто используем обозначения без подстрочных индексов.

Вообще, задачи на экономическую и промышленную тематику – самые популярные в статистике, и в моей коллекции их сотни. Но все они до ужаса однотипны, и поэтому я предлагаю их в терапевтической дозировке 🙂

Выполнить расчёты в Экселе – числа уже там, ну а инструкцию я на этот раз не привёл, поскольку люди вы уже опытные.

Краткое решение и ответ в конце урока, который подошёл к концу.

Следующее занятие не за горами, а уже за кочкой:

Пример 17. Решение:

а) Используем формулу . По условию, , . Таким образом:

б) Используем формулу . По условию, , . Таким образом:

Ответ: а) , б)

Пример 18. Решение: вычислим сумму вариант и сумму их квадратов:

Найдём среднюю:
тонны – среднемесячный объем производства за полугодие.
Дисперсию вычислим по формуле:

Среднее квадратическое отклонение:
тонн.
Коэффициент вариации:

Ответ: тонны, тонн,

Краткие выводы: за первое полугодие среднемесячный объём производства труб составил тонны. Низкие показатели вариации говорят о стабильной ситуации на производстве.

Автор: Емелин Александр

(Переход на главную страницу)

«Всё сдал!» — онлайн-сервис помощи студентам

Источник