Признаки параллелограмма если в четырехугольнике противоположные

Параллелограмм: свойства и признаки

Определение параллелограмма

Параллелограмм — это четырехугольник, у которого противоположные стороны попарно параллельны. Как выглядит параллелограмм:

Частные случаи параллелограмма: ромб, прямоугольник, квадрат.

Диагонали — отрезки, которые соединяют противоположные вершины.

Свойства диагоналей параллелограмма:

Биссектриса параллелограмма — это отрезок, который соединяет вершину с точкой на одной из двух противоположных сторон и делит угол при вершине пополам.

Свойства биссектрисы параллелограмма:

Как найти площадь параллелограмма:

Периметр параллелограмма — сумма длины и ширины, умноженная на два.

P = 2 * (a + b), где a — ширина, b — высота.

Приходите решать увлекательные задачки с красочными героями и в интерактивном формате. Запишите вашего ребенка на бесплатный пробный урок математики в онлайн-школу Skysmart: познакомимся, покажем, как все устроено на платформе и наметим вдохновляющую программу обучения.

У нас есть отличные дополнительные занятия по математике! Для учеников с 1 по 11 классы!

Свойства параллелограмма

Геометрическая фигура — это любое множество точек. У каждой фигуры есть свои свойства, которые отличают их между собой и помогают решать задачи по геометрии в 8 классе.

Рассмотрим основные свойства диагоналей и углов параллелограмма, узнаем чему равна сумма углов параллелограмма и другие особенности этой фигуры. Вот они:

А сейчас докажем теорему, которая основана на первых двух свойствах.

Теорема 1. В параллелограмме противоположные стороны и противоположные углы равны.

В любом выпуклом четырехугольнике диагонали пересекаются. Все, что мы знаем о точке их пересечения — это то, что она лежит внутри четырехугольника.

Если мы проведем обе диагонали в параллелограмме, точка пересечения разделит их пополам. Убедимся, так ли это:

Теорема доказана. Наше предположение верно.

Признаки параллелограмма

Признаки параллелограмма помогают распознать эту фигуру среди других четырехугольников. Сформулируем три основных признака.

Первый признак параллелограмма. Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник — параллелограмм.

Докажем 1 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

Чтобы назвать этот четырехугольник параллелограммом, нужно внимательно рассмотреть его стороны.

Сейчас мы видим одну пару параллельных сторон. Нужно доказать, что вторая пара сторон тоже параллельна.

Шаг 2. Проведем диагональ. Получились два треугольника ABC и CDA, которые равны по первому признаку равенства, то есть по по двум сторонам и углу между ними:

Шаг 3. Из равенства треугольников также следует:

Читайте также:  Отличительными признаками правоохранительной деятельности являются

Эти углы тоже являются внутренними накрест лежащими для прямых CB и AD. А это как раз и есть признак параллельности прямых. Значит, CB || AD и ABCD — параллелограмм.

Вот так быстро мы доказали первый признак.

Второй признак параллелограмма. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.

Докажем 2 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

Шаг 2. Рассмотрим треугольники ABC и ADC:

Из этого следует, что треугольники ABC и ADC равны по третьему признаку, а именно по трем сторонам.

Шаг 3. Из равенства треугольников следует:

А так как эти углы накрест лежащие при верхней и нижней сторонах и секущей диагонали, значит верхняя и нижняя стороны параллельны.

Эти углы накрест лежащие при боковых сторонах и секущей диагонали. Поэтому боковые стороны четырёхугольника тоже параллельны. Значит четырёхугольник ABCD — параллелограмм, ЧТД.

Доказали второй признак.

Третий признак параллелограмма. Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.

Докажем 3 признак параллелограмма:

Шаг 1. Если диагонали четырехугольника ABCD делятся пополам точкой O, то треугольник AOB равен треугольнику COD по двум сторонам и углу между ними:

Шаг 2. Из равенства треугольников следует, что CD = AB.

Эти стороны параллельны CD || AB, по равенству накрест лежащиз углов ∠1 = ∠2.

Значит, ABCD является параллелограммом по первому признаку, который мы доказали ранее. Что и требовалось доказать.

Теперь мы знаем свойства параллелограмма и то, что выделяет его среди других четырехугольников — признаки. Так как они совпадают, эти формулировки можно использовать для определения параллелограмма. Но самое распространенное определение все таки связано с параллельностью противоположных сторон.

Чтобы ребенок еще лучше учился в школе, запишите его на уроки математики в детскую школу Skysmart. Наши преподаватели понятно объяснят что угодно — от дробей до синусов — и ответят на вопросы, которые бывает неловко задать перед всем классом. А еще помогут догнать сверстников и справиться со сложной контрольной.

Источник

Параллелограмм, его признаки и свойства

Параллелограмм — четырехугольник, у которого противоположные стороны попарно параллельны.

Теоремы (свойства параллелограмма):

В параллелограмме противоположные стороны равны и противоположные углы равны: , , ,.

Диагонали параллелограмма точкой пересечения делятся пополам: , .

Углы, прилежащие к любой стороне, в сумме равны .

Диагонали параллелограмма делят его на два равных треугольника.

Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: .

Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник — параллелограмм.

Читайте также:  Признаки спида у мужчин первые признаки фото лечение

Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.

Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм.

Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.

Середины сторон произвольного (в том числе невыпуклого или пространственного) четырехугольника являются вершинами параллелограмма Вариньона.

Стороны этого параллелограмма параллельны соответствующим диагоналям четырехугольника . Периметр параллелограмма Вариньона равен сумме длин диагоналей исходного четырехугольника, а площадь параллелограмма Вариньона равна половине площади исходного четырехугольника.

Источник

Признаки параллелограмма

Доказательство:

Дано: АВСD — четырехугольник, АD = ВС, АDВС.

Доказать: АВСD — параллелограмм.

Доказательство:

1. Проведем диагональ АС четырехугольника АВСD.

Доказательство:

Доказать: АВСD — параллелограмм.

Доказательство:

1. Проведем диагональ АС четырехугольника АВСD.

3. Итак, АD = ВC, АDВС, по 1 0 признаку параллелограмма, четырехугольник АВСD — параллелограмм. Что и требовалось доказать.

Доказательство:

Доказать: АВСD — параллелограмм.

Доказательство:

1. Рассмотрим АОD и ВОС: по условию АО = ОС, = ОВ, АОD и ВОС (как вертикальные углы), АОD =ВОС (по 1 признаку равенства треугольников), АD = ВC и 1 = 2.

2. 1 и 2 накрест лежащие при пересечении прямых АD и ВC секущей АС, при этом 1 = 2, по признаку параллельности двух прямых АDВС.

3. Итак, АD = ВC, АDВС, по 1 0 признаку параллелограмма, четырехугольник АВСD — параллелограмм. Что и требовалось доказать.

Поделись с друзьями в социальных сетях:

Источник

Параллелограмм. Свойства и признаки параллелограмма

Определение параллелограмма

Параллелограмм – четырехугольник, у которого противоположные стороны попарно параллельны.

Свойства параллелограмма

1. Противоположные стороны параллелограмма попарно равны

2. Противоположные углы параллелограмма попарно равны

3. Сумма смежных (соседних) углов параллелограмма равна 180 градусов

4. Сумма всех углов равна 360°

5. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам

6. Точка пересечения диагоналей является центром симметрии параллелограмма

7. Диагонали параллелограмма и стороны
связаны следующим соотношением:

8. Биссектриса отсекает от параллелограмма равнобедренный треугольник

Признаки параллелограмма

Четырехугольник является параллелограммом, если выполняется хотя бы одно из следующих условий:

1. Противоположные стороны попарно равны:

2. Противоположные углы попарно равны:

3. Диагонали пересекаются и в точке пересечения делятся пополам

4. Противоположные стороны равны и параллельны:

5.

Небольшой видеоролик о свойствах параллелограмма (в том числе ромба, прямоугольника, квадрата) и о том, как эти свойства применяются в задачах:


Формулы площади параллелограмма смотрите здесь.

Хорошую подборку задач на нахождение углов и длин в параллелограмме смотрите здесь.

Источник

Признаки параллелограмма

Теорема 1. Если противоположные стороны четырёхугольника попарно равны, то этот четырёхугольник — параллелограмм.

Читайте также:  Системообразующим признаком в марксистской теории социальной классификации является

Пусть в четырёхугольнике AВDС (рис. 227) АВ = СD и АС = ВD. Докажем, что при этом условии АВ || СD и АС || ВD, т. е. четырёхугольник АВDC — параллелограмм.

Соединим отрезком какие-нибудь две противоположные вершины этого четырёхугольника, например С и В. Четырёхугольник ABDС разбился на два равных треугольника: \(\Delta\)СAВ и \(\Delta\)СDВ. В самом деле, сторона СВ у них общая, AB = СD и АС = ВD по условию. Таким образом, три стороны одного треугольника соответственно равны трём сторонам другого, поэтому \(\Delta\)СAВ = \(\Delta\)СDВ.

В равных треугольниках против равных сторон лежат равные углы, поэтому

Углы 1-й и 2-й являются внутренними накрест лежащими углами при пересечении прямых AB и СD прямой СВ. Следовательно, AB || СD.

Точно так же углы 3-й и 4-й являются внутренними накрест лежащими углами при пересечении прямых CA и ВD прямой СВ, следовательно, CA || ВD.

Теорема 2. Если две противоположные стороны четырёхугольника равны и параллельны, то этот четырёхугольник — параллелограмм.

Пусть в четырёхугольнике ABDС AB = СD и AB || СD. Докажем, что при этих условиях четырёхугольник ABDС — параллелограмм (рис. 228).

Соединим отрезком СВ вершины С и В. Вследствие параллельности прямых AB и СD углы 1 и 2, как углы внутренние накрест лежащие, равны.

Тогда треугольник СAB равен треугольнику СDВ, так как сторона СВ у них общая,

AB = СD по условию теоремы и ∠1 = ∠2 по доказанному.

Из равенства этих треугольников вытекает равенство углов 3 и 4, так как они лежат против равных сторон в равных треугольниках.

Но углы 3 и 4 — это внутренние накрест лежащие углы, образованные при пересечении прямых АС и ВD прямой СВ, следовательно, АС || ВD, т. е. четырёхугольник ABDС — параллелограмм.

Теорема 3. Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник будет являться параллелограммом.

Рассмотрим четырехугольник ABCD. Проведем в нем две диагонали AC и BD, которые будут пересекаться в точке О и делятся этой точкой пополам.

Следовательно, AB = CD и ∠1 = ∠2. Из равенства углов 1 и 2 имеем, что AB || CD.

Тогда имеем, что в четырехугольнике ABCD стороны AB = CD и AB || CD, и по первому признаку параллелограмма четырехугольник ABCD будет являться параллелограммом.

Признаки параллелограмма кратко:

1. Противоположные стороны попарно равны

2. Противоположные стороны равны и параллельны

3. Диагонали пересекаются и в точке пересечения делятся пополам

Источник