Признак равенства треугольников по стороне и противолежащему углу

Признаки равенства треугольников

Из школьного курса геометрии хорошо известен признак равенства треугольников по двум сторонам и углу между ними, а именно:

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны (рис. 1).

Естественно поставить вопрос о том, будут ли равны треугольники, если соответствующие равные углы в треугольниках не заключены между равными сторонами. Верно ли, что если две стороны и угол одного треугольника соответственно равны двум сторонам и углу другого треугольника, то такие треугольники равны.

Оказывается это неверно. Приведем пример. Рассмотрим окружность и ее хорду AB (рис. 2). С центром в точке A проведем другую окружность, пересекающую первую окружность в некоторых точках C и C1. Тогда в треугольниках ABC и ABC1 AB — общая сторона, однако треугольники ABC и ABC1 не равны.

В формулировки признаков равенства треугольников можно включать не только стороны и углы, но и другие элементы треугольников. Рассмотрим несколько формулировок признаков равенства треугольников по трем элементам, включающим стороны, углы, высоты, биссектрисы и медианы треугольников. Выясним справедливость соответствующих признаков.

Если угол, сторона, противолежащая этому углу, и высота, опущенная на другую сторону, одного треугольника соответственно равны углу, стороне и высоте другого треугольника, то такие треугольники равны.

Пусть в треугольниках ABC и A1B1C1 С = С1, AB = A1B1, высота AH равна высоте A1H1 (рис. 3). Докажем, что треугольники ABC и A1B1C1 равны.

Прямоугольные треугольники ABH и A1B1H1 равны по катету и гипотенузе. Значит, Учитывая, что С = С1, имеем равенство A = A1. Таким образом, в треугольниках ABC и A1B1C1

AB = A1B1, A = A1, B = B1.

Следовательно, эти треугольники равны по стороне и двум прилежащим к ней углам.

Пусть угол, сторона, прилежащая к этому углу, и высота, опущенная на другую сторону, прилежащую к данному углу, одного треугольника соответственно равны углу, стороне и высоте другого треугольника (рис. 4).

Приведем пример, показывающий, что равенства указанных элементов треугольников не достаточно для равенства самих треугольников.

Рассмотрим прямоугольные треугольники ABH и A1B1H1 ( H = H1 = 90 o ), в которых

AB = A1B1, B = B1, AH = A1H1

AB = A1B1, B = B1,

высоты AH и A1H1 равны, однако сами треугольники не равны.

Если две стороны и медиана, заключенная между ними, одного треугольника соответственно равны двум сторонам и медиане другого треугольника, то такие треугольники равны.

ACD = A1C1D1.

Аналогично, треугольники BCD и B1C1D1 равны по трем сторонам. Следовательно,

BCD = B1C1D1.

Значит, С = С1 и треугольники ABC и A1B1C1 равны по двум сторонам и углу между ними.

Пусть угол, сторона, прилежащая к этому углу, и медиана, проведенная к этой стороне, одного треугольника соответственно равны углу, стороне и медиане другого треугольника (рис. 7).

Приведем пример, показывающий, что равенства указанных элементов не достаточно для равенства самих треугольников.

Рассмотрим окружность с центром в точке M (рис. 8). Проведем два диаметра AB и A1B1. Через точки A, A1, M проведем еще одну окружность и выберем на ней точку C, как показано на рисунке. В треугольниках ABC и A1B1C

медиана СM — общая. Однако треугольники не равны.

Если сторона и две медианы, проведенные к двум другим сторонам, одного треугольника соответственно равны стороне и двум медианам другого треугольника, то такие треугольники равны.

Точки O и O1 пересечения медиан данных треугольников делят медианы в отношении 2 : 1, считая от вершины. Значит, треугольники ABO и A1B1O1 равны по трем сторонам. Следовательно,

BAO = B1A1O1,

значит, треугольники ABM и A1B1M1 равны по двум сторонам и углу между ними. Поэтому

Читайте также:  Генетический код признаки генетического кода

ABC = A1B1C1.

Аналогично доказывается, что

BAC = B1A1C1.

Таким образом, треугольники ABC и A1B1C1 равны по стороне и двум прилежащим к ней углам.

Пусть угол и две медианы, проведенные к его сторонам, одного треугольника соответственно равны углу и двум медианам другого треугольника (рис. 10).

Приведем пример, показывающий, что равенства указанных элементов не достаточно для равенства самих треугольников.

Для этого рассмотрим две равные окружности с центрами в точках O1 и O2, касающиеся друг друга в точке M (рис. 11).

Проведем в одной из них хорду AB и прямую AM, пересекающую вторую окружность в некоторой точке C. Проведем отрезок BC. Получим треугольник ABC. Проведем в нем медиану CK и обозначим O точку, делящую ее в отношении 2 : 1, считая от вершины C. Проведем окружность с центром в точке O, радиуса OC, пересекающую вторую окружность в точке C1. Проведем прямую C1M и обозначим A1 ее точку пересечения с первой окружностью. Обозначим K1 точку пересечения хорды A1B и прямой C1O. В треугольниках ABC и A1BC1 A = A1, медианы CK и C1K1 равны, медиана BM — общая. Однако треугольники ABC и A1BC1 не равны.

Ели две стороны и биссектриса, заключенная между ними, одного треугольника соответственно равны двум сторонам и биссектрисе другого треугольника, то такие треугольники равны.

Продолжим стороны AC и A1C1 и отложим на их продолжениях отрезки (рис. 12). Тогда

Треугольники BCE и B1C1E1 равны по трем сторонам. Значит, E = E1 и BE = B1E1. Треугольники ABE и A1B1E1 равны по двум сторонам и углу между ними. Значит, AB = A1B1. Таким образом, треугольники ABC и A1B1C1 равны по трем сторонам.

Пусть угол, сторона, прилежащая к этому углу, и биссектриса, проведенная к другой стороне, прилежащей к данному углу, одного треугольника соответственно равны углу, стороне и биссектрисе другого треугольника (рис. 13).

Пример треугольников ABC и ABC1, изображенных на рисунке 14, показывает, что равенства указанных элементов не достаточно для равенства самих треугольников.

Действительно, в треугольниках ABC и ABC1 B — общий, AB — общая сторона, биссектрисы AD и AD1 равны. Однако треугольники ABC и ABC1 не равны.

Пусть сторона, медиана и высота, проведенные к двум другим сторонам, одного треугольника соответственно равны стороне, медиане и высоте другого треугольника (рис. 15).

Приведем пример, показывающий, что равенства указанных элементов не достаточно для равенства самих треугольников.

Для этого рассмотрим окружность и угол с вершиной в центре A этой окружности (рис. 16). Отложим на его стороне отрезок AB, больший диаметра, и через его середину K проведем прямую, параллельную другой стороне угла, и пересекающую окружность в некоторых точках M и M1. Проведем прямые BM, BM1 и точки их пересечения со стороной угла обозначим соответственно C и C1. Тогда в треугольниках ABC и ABC1 сторона AB — общая, высота BH — общая, медианы AM и AM1 равны, однако треугольники ABC и ABC1 не равны.

Два треугольника равны, если сторона, медиана и высота, проведенные к другой стороне, одного треугольника соответственно равны стороне, медиане и высоте другого треугольника.

Два треугольника равны, если три медианы одного треугольника соответственно равны трем медианам другого треугольника.

Пусть O и O1 — точки пересечения медиан данных треугольников. Заметим, что медианы OM и O1M1 треугольников ABO и A1B1O1 равны, так как они составляют одну третью часть соответствующих медиан данных треугольников.

По признаку равенства треугольников, доказанному нами под номером 3, треугольники ABO и A1B1O1 равны, значит, AB = A1B1.

Два треугольника равны, если три высоты одного треугольника соответственно равны трем высотам другого треугольника.

Обозначим стороны треугольников соответственно a, b, c и a1, b1, c1, а соответствующие высоты ha, bb, hc и h1a, h1b, h1c. Имеют место равенства aha = bhb = chc и a1h1a = b1h1b = c1h1c. Разделив почленно первые равенства на вторые, получим равенства из которых следует, что треугольники ABC и A1B1C1 подобны. Так как соответствующие высоты этих треугольников равны, то они не только подобны, но и равны.

Читайте также:  Признаки какие демократического политического режима

Источник

Инструменты пользователя

Инструменты сайта

Боковая панель

Геометрия:

Контакты

Признаки равенства треугольников

Два треугольника называются равными, если их можно совместить наложением. На рисунке 1 изображены равные треугольники ABC и А1В1С1. Каждый из этих треугольников можно наложить на другой так, что они полностью совместятся, т. е. попарно совместятся их вершины и стороны. Ясно, что при этом совместятся попарно и углы этих треугольников.

Таким образом, если два треугольника равны, то элементы (т. е. стороны и углы) одного треугольника соответственно равны элементам другого треугольника. Отметим, что в равных треугольниках против соответственно равных сторон (т. е. совмещающихся при наложении) лежат равные углы, и обратно: против соответственно равных углов лежат равные стороны.

Так, например, в равных треугольниках ABC и A1B1C1, изображенных на рисунке 1, против соответственно равных сторон АВ и А1В1 лежат равные углы С и С1. Равенство треугольников ABC и А1В1С1 будем обозначать так: Δ ABC = Δ А1В1С1. Оказывается, что равенство двух треугольников можно установить, сравнивая некоторые их элементы.

Теорема 1. Первый признак равенства треугольников. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны (рис.2).

Доказательство. Рассмотрим треугольники ABC и A1B1C1, у которых АВ = A1B1, АС = A1C1 ∠ А = ∠ А1 (см. рис.2). Докажем, что Δ ABC = Δ A1B1C1.

Так как ∠ А = ∠ А1, то треугольник ABC можно наложить на треугольник А1В1С1 так, что вершина А совместится с вершиной А1, а стороны АВ и АС наложатся соответственно на лучи А1В1 и A1C1. Поскольку АВ = A1B1, АС = А1С1, то сторона АВ совместится со стороной А1В1 а сторона АС — со стороной А1C1; в частности, совместятся точки В и В1, С и C1. Следовательно, совместятся стороны ВС и В1С1. Итак, треугольники ABC и А1В1С1 полностью совместятся, значит, они равны.

Аналогично методом наложения доказывается теорема 2.

Теорема 2. Второй признак равенства треугольников. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны (рис. 34).

Замечание. На основе теоремы 2 устанавливается теорема 3.

Теорема 3. Сумма любых двух внутренних углов треугольника меньше 180°.

Из последней теоремы вытекает теорема 4.

Теорема 4. Внешний угол треугольника больше любого внутреннего угла, не смежного с ним.

Теорема 5. Третий признак равенства треугольников. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны (подробнее).

Пример 1. В треугольниках ABC и DEF (рис. 4)

∠ А = ∠ Е, АВ = 20 см, АС = 18 см, DE = 18 см, EF = 20 см. Сравнить треугольники ABC и DEF. Какой угол в треугольнике DEF равен углу В?

Решение. Данные треугольники равны по первому признаку. Угол F треугольника DEF равен углу В треугольника ABC, так как эти углы лежат против соответственно равных сторон DE и АС.

Пример 2. Отрезки АВ и CD (рис. 5) пересекаются в точке О, которая является серединой каждого из них. Чему равен отрезок BD, если отрезок АС равен 6 м?

Решение. Треугольники АОС и BOD равны (по первому признаку): ∠ АОС = ∠ BOD (вертикальные), АО = ОВ, СО = OD (по условию).
Из равенства этих треугольников следует равенство их сторон, т. е. АС = BD. Но так как по условию АС = 6 м, то и BD = 6 м.

Читайте также:  На каких признаках базируется работа учителя с одаренными детьми

Пример 3. В треугольниках ABC и DEF (см. рис. 4) АВ = EF, ∠A = ∠E, ∠B = ∠F.

Сравнить эти треугольники. Какие стороны в треугольнике DEF равны соответственно сторонам ВС и СА?

Решение. Треугольники ABC и DEF равны по второму признаку. Стороны DF и DE треугольника DEF равны соответственно сторонам ВС и СА треугольника ABC, так как стороны DF и ВС (DE и СА) лежат против равных углов Е и A (F и В).

Пример 4. На рисунке 6 углы DAB и СВА, CAB и DBA равны, СА = 13 м. Найти DB.

Решение. Треугольники АСВ и ADB имеют одну общую сторону АВ и по два равных угла, которые прилежат к этой стороне. Следовательно, треугольники АСВ и ADB равны (по второму признаку). Из равенства этих треугольников следует равенство сторон BD и АС, т. е. BD = 13 м.

Источник

Признаки равенства треугольников

Два треугольника считаются равными, если их можно совместить наложением. Но, чтобы не выполнять каждый раз наложение, для доказательства равенства треугольников, установили три признака, по которым можно определить, совместятся треугольники или нет. Эти признаки называются признаками равенства треугольников.

Первый признак равенства треугольников

Теорема:

Два треугольника равны, если у них равны две стороны и угол, лежащий между этими сторонами.

Рассмотрим два треугольника ABC и A1B1C1, у которых:

Требуется доказать, что

ABC = A1B1C1.

Если наложить A1B1C1 на ABC так, чтобы точка A1 совместилась с точкой A и сторона A1B1 совместилась со стороной AB, то точка B совместится с точкой B1, так как A1B1 = AB. Сторона A1C1 совместится со стороной AC, так как ∠A = ∠A1. Точка C1 совпадёт с точкой C, так как A1C1 = AC. Стороны B1C1 и BC совместятся, так как совместились их концы. Таким образом, треугольники совместятся. Теорема доказана.

Второй признак равенства треугольников

Теорема:

Два треугольника равны, если у них равна одна из сторон и два прилежащих к ней угла.

Рассмотрим два треугольника ABC и A1B1C1, у которых:

Требуется доказать, что

ABC = A1B1C1.

Если наложить A1B1C1 на ABC так, чтобы точка A1 совместилась с точкой A и сторона A1C1 совместилась со стороной AC, то точка C1 совпадёт с точкой C, так как A1C1 = AC. Сторона A1B1 совпадёт со стороной AB, так как ∠A = ∠A1. Сторона C1B1 совпадёт со стороной CB, так как ∠C = ∠C1. Вершина B1 совпадёт с вершиной B, так как B и B1 будут служить точками пересечения одних и тех же отрезков. Таким образом, треугольники совместятся. Теорема доказана.

Третий признак равенства треугольников

Теорема:

Два треугольника равны, если три стороны одного треугольника равны трём сторонам другого.

Рассмотрим два треугольника ABC и A1B1C1, у которых:

Требуется доказать, что

ABC = A1B1C1.

Приложим треугольники ABC и A1B1C1 один к другому так, чтобы вершина A совместилась с A1, вершина C — с C1, а вершины B и B1 оказались по разные стороны от прямой AC.

Соединив точки B и B1, получим два равнобедренных треугольника BAB1 и BСB1.

В треугольнике BAB1 1 = 4, в BСB1 2 = 3 (как углы при основании). Следовательно,

Из этого следует, что треугольники ABC и A1B1C1 равны по первому признаку равенства треугольников. Теорема доказана.

Признаки равенства прямоугольных треугольников

Для прямоугольных треугольников, кроме перечисленных трёх признаков равенства, имеются ещё дополнительные признаки, так как у них у всех есть прямой угол, а все прямые углы равны между собой.

Два прямоугольных треугольника будут равны в следующих четырёх случаях:

Источник

Adblock
detector