Авсд равнобедренная трапеция назовите признаки

Содержание
  1. Равнобедренная трапеция. Формулы, признаки и свойства равнобедренной трапеции
  2. Признаки равнобедренной трапеции
  3. Основные свойства равнобедренной трапеции
  4. Стороны равнобедренной трапеции
  5. Формулы длин сторон равнобедренной трапеции:
  6. Средняя линия равнобедренной трапеции
  7. Формулы длины средней линии равнобедренной трапеции:
  8. Высота равнобедренной трапеции
  9. Формулы определения длины высоты равнобедренной трапеции:
  10. Диагонали равнобедренной трапеции
  11. Формулы длины диагоналей равнобедренной трапеции:
  12. Площадь равнобедренной трапеции
  13. Формулы площади равнобедренной трапеции:
  14. Окружность описанная вокруг трапеции
  15. Формула определения радиуса описанной вокруг трапеции окружности:
  16. Трапеция. Свойства трапеции
  17. Свойства трапеции
  18. Свойства и признаки равнобедренной трапеции
  19. Вписанная окружность
  20. Площадь
  21. Трапеция
  22. Признаки и свойства равнобедренной трапеции
  23. Авсд равнобедренная трапеция назовите признаки

Равнобедренная трапеция. Формулы, признаки и свойства равнобедренной трапеции

Признаки равнобедренной трапеции

∠ABC = ∠BCD и ∠BAD = ∠ADC

∠ABD = ∠ACD, ∠DBC = ∠ACB, ∠CAD = ∠ADB, ∠BAC = ∠BDC

∠ABC + ∠ADC = 180° и ∠BAD + ∠BCD = 180°

Основные свойства равнобедренной трапеции

∠ABC + ∠BAD = 180° и ∠ADC + ∠BCD = 180°

AC 2 + BD 2 = AB 2 + CD 2 + 2BC · AD

Стороны равнобедренной трапеции

Формулы длин сторон равнобедренной трапеции:

a = b + 2 h ctg α = b + 2 c cos α

3. Формулы длины основ через площадь, высоту и другую основу:

a = 2S — b b = 2S — a
h h

4. Формулы длины боковой стороны через площадь, среднюю линию и угол при основе:

с = S
m sin α

5. Формулы длины боковой стороны через площадь, основания и угол при основе:

с = 2S
( a + b ) sin α

Средняя линия равнобедренной трапеции

Формулы длины средней линии равнобедренной трапеции:

2. Формула средней линии трапеции через площадь и сторону:

m = S
c sin α

Высота равнобедренной трапеции

Формулы определения длины высоты равнобедренной трапеции:

Диагонали равнобедренной трапеции

Формулы длины диагоналей равнобедренной трапеции:

4. Формула длины диагонали через высоту и основания:

d 1 = 1 √ 4 h 2 + ( a + b ) 2
2

Площадь равнобедренной трапеции

Формулы площади равнобедренной трапеции:

2. Формула площади через стороны и угол:

3. Формула площади через радиус вписанной окружности и угол между основой и боковой стороной:

S = 4 r 2 = 4 r 2
sin α sin β

4. Формула площади через основания и угол между основой и боковой стороной:

S = ab = ab
sin α sin β

5. Формула площади ранобедренной трапеции в которую можно вписать окружность:

S = ( a + b ) · r = √ ab ·c = √ ab ·m

6. Формула площади через диагонали и угол между ними:

S = d 1 2 · sin γ = d 1 2 · sin δ
2 2

7. Формула площади через среднюю линию, боковую сторону и угол при основании:

S = mc sin α = mc sin β

Окружность описанная вокруг трапеции

Формула определения радиуса описанной вокруг трапеции окружности:

1. Формула радиуса через стороны и диагональ:

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Источник

Трапеция. Свойства трапеции

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Читайте также:  Обязательные признаки злоупотребления должностными полномочиями

Свойства трапеции

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

3. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны.

Коэффициент подобия –

Отношение площадей этих треугольников есть .

4. Треугольники и , образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Вписанная окружность

Если в трапецию вписана окружность с радиусом и она делит боковую сторону точкой касания на два отрезка — и , то

Площадь

или где – средняя линия

Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

трапеция АВСД, ВС – 6, АД – 9, диагонали перетинаються в точке О. Найти ОД и ОВ, якщо ОД-ВО=2.

Помогите пожалуйста в решении такой задачи.Найдите радиус окружности вписанной в равнобедренную трапецию если основание 8,2 см. Заранее спасибо!

Виталий, чего-то не хватает в условии. Дайте точную формулировку.

Помогите пожалуйста решить задачу. Найти площадь равнобедренной трапеции если диагональ делит острый угол пополам и среднюю линию на отрезки 23 и 13.Большое спасибо.

Пусть – меньшее и большее основания соответственно.
, так как отрезок средней линии трапеции, равный 13, является средней линией треугольника с основанием . Аналогично
Далее замечаем, что треугольник – равнобедренный, тогда
Опускаем из и высоты к . Из одного из образовавшихся прямоугольных треугольников находим высоту по теореме Пифагора:
Наконец,

Помогите пожалуйста решить задачку. Дана равнобедренная трапеция АВСD (AD параллельна BC). Известно,что AD>BC. На её описанной окружности отмечена точка Е, такая, что BE перпендикулярна AD. Докажите, что АЕ+ВС>DE.

прошу подсказать решение:
Дана трапеция АВСД (не равнобедренная!). Диагонали АС и ВД перпендикулярны, причем АС=48см. Средняя линия MN=25см.
Высота ВН опущена на основание АД(перпендикулярна ему)
Найти Высоту ВН

Читайте также:  Признак домового в доме

Перенесите диагональ параллельно самой себе в точку . У полученного прямоугольного треугольника ( – точка на ) известна гипотенуза (50) и катет (48). Находим второй катет (14) – это ( или ).
Теперь вам просто надо найти высоту прямоугольного треугольника , проведенную к гипотенузе. Все для этого есть!

спасибо большое, оказывается все очень просто!

Елена Юрьевна,добрый вечер.Поздравляю Вас с профессиональным
праздником! Помогите пожалуйста разобраться в задаче для 8 класса. В учебнике мало информации. Заранее благодарю Вас.
Докажите, что из одинаковых плиток, имеющих форму равнобедренной трапеции, можно сделать паркет, полностью покрывающий любую часть плоскости.

Виктория,спасибо!
Можно положить плитки друг к другу так, чтобы боковые стороны совпали, при этом меньшее основание одной плитки лежало бы на одной прямой с большим основанием другой плитки (а такое совпадение обязательно произойдет, так как сумма соседних углов при разных основаниях равна 180 градусам по свойству трапеции). Так можно покрыть полосу, а такими полосами покрыть и плоскость.

Источник

Трапеция

Определения

Трапеция – это выпуклый четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны.

Параллельные стороны трапеции называются её основаниями, а две другие стороны – боковыми сторонами.

Высота трапеции – это перпендикуляр, опущенный из любой точки одного основания к другому основанию.

Теоремы: свойства трапеции

2) Диагонали делят трапецию на четыре треугольника, два из которых подобны, а два другие – равновелики.

Доказательство

Определение

Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.

Теорема

Средняя линия трапеции параллельна основаниям и равна их полусумме.

Доказательство*
С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.

1) Докажем параллельность.

\[MN=MM’+M’N’+N’N=\dfrac12 AB’+B’C’+\dfrac12 C’D=\] \[=\dfrac12 \left(AB’+B’C’+BC+C’D\right)=\dfrac12\left(AD+BC\right)\]

Теорема: свойство произвольной трапеции

Середины оснований, точка пересечения диагоналей трапеции и точка пересечения продолжений боковых сторон лежат на одной прямой.

Доказательство*
С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.

2) Докажем, что точки \(N, O, M\) лежат на одной прямой.

\(\triangle BNO\sim \triangle DMO\) по двум углам ( \(\angle OBN=\angle ODM\) как накрест лежащие при \(BC\parallel AD\) и \(BD\) секущей; \(\angle BON=\angle DOM\) как вертикальные). Значит: \[\dfrac=\dfrac\]

Определения

Трапеция называется прямоугольной, если один из ее углов – прямой.

Трапеция называется равнобедренной, если ее боковые стороны равны.

Теоремы: свойства равнобедренной трапеции

1) У равнобедренной трапеции углы при основании равны.

2) Диагонали равнобедренной трапеции равны.

3) Два треугольника, образованные диагоналями и основанием, являются равнобедренными.

Доказательство

2)

Теоремы: признаки равнобедренной трапеции

1) Если у трапеции углы при основании равны, то она равнобедренная.

2) Если у трапеции диагонали равны, то она равнобедренная.

Доказательство

Источник

Признаки и свойства равнобедренной трапеции

\(\blacktriangleright\) Равнобедренная трапеция – трапеция, у которой боковые стороны равны.

Свойства равнобедренной трапеции:

\(\blacktriangleright\) Углы при каждом основании равны;

Читайте также:  Перелом наружной лодыжки признаки

\(\blacktriangleright\) Диагонали равны;

\(\blacktriangleright\) Два треугольника, образованные диагоналями и одним из оснований, являются равнобедренными;

\(\blacktriangleright\) Два треугольника, образованные диагоналями и боковой стороной, равны.

\[\begin S_ = S_ <\triangle ABC>+ S_ <\triangle CDA>= \frac<1><2>\cdot AC \cdot BO + \frac<1><2>\cdot AC \cdot OD =\\ =\frac<1><2>\cdot AC \cdot(BO + OD) = \frac<1><2>\cdot AC \cdot BD = \frac<1> <2>\cdot 2 \cdot 2 = 2\end\]

В равнобедренной трапеции \(ABCD\) основание \(AD\) вдвое длиннее основания \(BC\) и боковой стороны. Найдите острый угол трапеции.

Учащимся старших классов, которые готовятся сдавать ЕГЭ по математике, в обязательном порядке стоит повторить тему «Равнобедренная трапеция» и освежить в памяти ее основные свойства и признаки. Многолетняя практика показывает, что подобные задания ежегодно встречаются в программе аттестационного испытания. Поэтому, если вы хотите успешно решить задачи ЕГЭ на применение основных свойств диагоналей или углов равнобедренной трапеции, вам непременно стоит разобраться в этой теме.

Образовательный портал «Школково» предлагает новый подход к подготовке к аттестационному испытанию. Наш ресурс позволяет учащимся определить наиболее сложные темы и ликвидировать имеющиеся пробелы в знаниях. Специалисты «Школково» подготовили и изложили весь материал в максимально доступной форме.

Чтобы выпускники могли успешно справляться с геометрическими задачами, мы рекомендуем вспомнить определение равнобедренной трапеции, свойства ее сторон, углов и диагоналей, а также формулу для вычисления площади. Эта информация представлена в разделе «Теоретическая справка».

Вспомнив основные свойства углов, диагоналей и сторон равнобедренной трапеции, учащиеся имеют возможность закрепить усвоенный материал, выполнив практические задания. Упражнения различного уровня сложности представлены в разделе «Каталог». В каждом из них вы найдете подробный алгоритм решения и правильный ответ.

Практиковаться в выполнении заданий по теме «Трапеция» при подготовке к ЕГЭ выпускники могут в режиме онлайн, находясь не только в Москве, но и в любом другом городе России. В случае необходимости любое упражнение можно сохранить в разделе «Избранное». Благодаря этому вы сможете быстро найти интересующие примеры и обсудить алгоритмы нахождения правильного ответа с преподавателем.

Источник

Авсд равнобедренная трапеция назовите признаки

Дана равнобедренная трапеция, в которой AD = 3BC, CM — высота трапеции.

а) Доказать, что M делит AD в отношении 2 : 1.

б) Найдите расстояние от точки C до середины BD, если AD = 18, AC =

а) Поскольку ABCD равнобедренная трапеция,

тогда откуда

б) В треугольнике AMC угол Треугольники BCO и MOD равны, поскольку угол CBO равен углу ODM, а угол C равен углу M. Тогда , откуда O — середина BD, CO — искомое расстояние. Из равенства треугольников BCO и MOD следует равенство отрезков CO и OM, откуда

Приведем решение п. б) Романа Прокопенко.

В треугольнике CMD по теореме Пифагора найдем откуда CD = 10. В треугольнике BCD точка О — середина отрезка BD, поэтому CO медиана. Найдем ее длину по формуле длины медианы:

Источник

Adblock
detector