Атрибутивные ряды строятся по признакам

Ряды распределения. Атрибутивный и вариационный ряды. Дискретный и интервальный ряды.

Важнейшей частью статистического анализа является построение рядов распределения (структурной группировки) с целью выделения характерных свойств и закономерностей изучаемой совокупности.

Если за основу группировки взят качественный признак, то такой ряд распределения называют атрибутивным (распределение по видам труда, по полу, по профессии, по религиозному признаку, национальной принадлежности и т.д.).

Если признак имеет непрерывное изменение (размер дохода, стаж работы, стоимость основных фондов предприятия и т.д., которые в определенных границах могут принимать любые значения), то для этого признака нужно строить интервальный вариационный ряд.

19 Статистика национального богатства: основные понятия и категории. Состав и структура национального богатства.

национальное богатство представляет собой совокупную стоимость всех экономических активов материальных (природные ресурсы) и нематериальных (нефинансовых и финансовых активов) в рыночных ценах, находящихся в собственности резидентов данной страны на территории страны или за ее пределом, а также, за вычетом их финансовых обязательств, как резидентам, так и нерезидентам.

Составляющие национального богатства:

природные ресурсы (земля, полезные ископаемые, энергетические ресурсы, лес и животный мир), которые являются учтенными и вовлеченными в оборот. Как характерную особенность природных ресурсов можно выделить то, что они являются невоспроизводимыми благами.

материальные ресурсы, приобретенные в результате накопленного труда. Материальные ресурсы можно производить в любое время, следовательно, они являются воспроизводимыми благами;

национальное имущество – складывается в процессе производства, в него входят:

основные фонды (здания, сооружения, транспортные средства, машины, оборудование и т. д.). Статистические данные основных фондов характеризуют их общее состояние, перспективы развития основных фондов по всей стране и отдельно в каждой отрасли;

оборотные фонды (производственные запасы – сырье, материалы, топливо, запчасти; незавершенное производство; готовая продукция, материальные резервы и т. д.);

личное имущество. Статистические данные о национальном имуществе используется для оценки уровня экономического развития;

накопленный научно-технический потенциал;

интеллектуальный потенциал.

21. Виды средних величин и формулы их расчета. Значение структурных средних. Средней величиной называется статистический показатель, который дает обобщенную характеристику варьирующего признака однородных единиц совокупности.

Виды средних величин

Средние величины делятся на два больших класса: степенные средние и структурные средние

Степенные средние:

§ Формула средней арифметической (простой) имеет вид

§ (5.2)

§ Средняя геометрическая. Чаще всего средняя геометрическая находит свое применение при определении средних темпов роста (средних коэффициентов роста), когда индивидуальные значения признака представлены в виде относительных величин. Она используется также, если необходимо найти среднюю между минимальным и максимальным значениями признака (например, между 100 и 1000000). Существуют формулы для простой и взвешенной средней геометрической.

§ Для простой средней геометрической

§

§ Средняя квадратическая величина. Основной сферой ее применения является измерение вариации признака в совокупности (расчет среднего квадратического отклонения).

§ Формула простой средней квадратической

§ (5

Структурные средние:

§ — значение моды

§ — нижняя граница модального интервала

§ — величина интервала

§ — частота модального интервала

§ — частота интервала, предшествующего модальному

§ — частота интервала, следующего за модальным

§ — искомая медиана

§ — нижняя граница интервала, который содержит медиану

§ — величина интервала

§ — сумма частот или число членов ряда

§ — сумма накопленных частот интервалов, предшествующих медианному

§ — частота медианного интервала

Средние величины широко применяются в различных отраслях знаний. Особо важную роль они играют в экономике и статистике: при анализе, планировании, прогнозировании, при расчете нормативов и при оценке достигнутого уровня. Средняя всегда именованная величина и имеет ту же размерность, что и отдельная единица совокупности

Источник

Ряды распределения: виды, правила построения и графическое отображение

Результаты группировки можно представить в виде статистических рядов распределения. Ряд распределения – это упорядоченное распределение единиц совокупности на группы по изучаемому признаку. В зависимости от группировочного признака различают атрибутивные и вариационные ряды.

Атрибутивными рядами распределения называют ряды, построенные по качественным признакам. Примером атрибутивных рядов являются распределения населения по полу, национальности, статусу занятости, образованию и т.д.

Читайте также:  Основные признаки классификации норм труда

Вариационными рядами распределения называют ряды, построенные по количественным признакам. Например, распределение населения по возрасту, сотрудников по стажу работы и уровню заработной платы, домохозяйств – по уровню доходов и расходов и т.д.

Вариационный ряд состоит из двух элементов: вариантов и частот. Под вариантами понимают конкретные значения признака, которые он принимает в вариационном ряду. Частоты ( )– это численности отдельных вариантов или каждой группы вариационного ряда, то есть это числа, показывающие, как часто встречаются те или иные варианты в ряду распределения. Накопленные частоты( ) показывают число единиц совокупности, у которых значение варианта не больше данного. Сумма всех частот называется объемом совокупности( ). Помимо частот в вариационном ряду распределения могут рассчитываться частости( ), представляющие собой частоты, выраженные либо в долях единицы, либо в процентах относительно объема совокупности ( ). Накопленные частости ( ) рассчитываются как отношение накопленной частоты к числу единиц совокупности и характеризуют долю единиц совокупности со значением не больше данного варианта.

В зависимости от характера вариации вариационные ряды подразделяются на дискретные и непрерывные. Дискретный вариационный рядхарактеризует распределение единиц совокупности по дискретному признаку, то есть признаку, принимающему только дискретные значения, число которых составляет счетное множество. Например, дискретный вариационный ряд может быть построен в случае группировки домохозяйств по числу детей, работающих членов семьи, иждивенцев.

Пример 3.1.Имеются следующие данные о количестве детей в 60 семьях:

0,2,1,3,4,1,1,1,1,2,2,3,4,0,0,5,2,0,1,2,0,3,2,2,2,3,5,1,0,1, 1,1,2,3,1,1,1,0,0,2,0,3,1,0,4,4,2,1,0,1,2,1,1,0,3,2,1,1,1,0.

Для того чтобы построить вариационный ряд, ранжируем (упорядочим) исходные данные:

0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5,5.

Затем подсчитаем число семей, в которых вариационный признак ( ) – количество детей, имеет одинаковое значение, то есть найдем частоту ( ) и оформим результаты подсчетов в виде ряда распределения, записанного в таблице:

Число детей в семье ( ) Число семей ( )

В случае непрерывной вариации, когда величина варьирующего признака может принимать в определенных пределах любые значения, отличающиеся друг от друга на сколь угодно малую величину, целесообразно строить интервальные вариационные ряды. Значения вариант в интервальных вариационных рядах могут быть как дробными, так и целыми. Значения варьирующего признака в этом случае задаются в виде интервалов. Каждый интервал имеет нижнюю границу (наименьшее значение признака в интервале) и верхнюю границу (наибольшее значение признака в интервале). Величина интервала представляет собой разность между его верхней и нижней границами. Если интервал имеет обе границы, его называют закрытым. Первый и последний интервалы могут быть открытыми. В этом случае, первый интервал не имеет нижней границы, а последний верхней. Такие интервалы могут быть условно закрыты. Для этого предполагается, что величина первого интервала равна величине второго, а величина последнего равна величине предпоследнего интервала. Далее от верхней границы первого интервала отнимают величину второго интервала и получают нижнюю границу первого интервала, а к нижней границе последнего интервала прибавляют величину предпоследнего и получают верхнюю границу последнего интервала.

Интервальные вариационные ряды могут также строится на основе дискретных рядов в случае, когда значительное число вариантов дискретного ряда имеют небольшую частоту появления относительно всего объема совокупности.

При построении интервального вариационного ряда важно определить величину интервала. Для этого используют формулу Стерджесса:

(3.1)

— минимальное значение признака в совокупности,

— максимальное значение признака в совокупности,

(3.2)

Относительная плотность распределения– частость, приходящаяся на единицу длины интервала. Относительная плотность интервала может быть рассчитана как:

(3.3)

Пример 3.2В результате статистического опроса получены данные о заработной плате 30 специалистов коммерческих банков (тыс. руб.):

22,45,36,17,24,39,40,44,55,72,77,56,27,41,40, 31,33,18,55,64,67,70,34,21,20,47,30,29,47,51

Сделать какие-либо выводы из исходных данных не представляется возможным. Строить дискретный вариационный ряд также нерационально, так как он будет иметь большое число значений с частотами равными единице. Более правильно построить интервальный вариационный ряд. Для этого воспользуемся формулой Стерджесса и определим величину интервала

При расчете величины интервала целесообразно округлять знаменатель до целого. В противном случае, при построении интервального ряда верхняя граница последнего интервала может не соответствовать максимальному значению признака в исходной совокупности.

Учитывая, что минимальное значение признака 17, образуем первый интервал, прибавив к минимальному значению величину интервала 10, то есть нижняя граница первого интервала 17, а верхняя 27, второй интервал соответственно 27-37 и т.д. Таким образом, получим интервалы 17-27, 27-37, 37-47, 47-57, 57-67, 67-77.

Ранжируем исходные данные:

Читайте также:  Признаки неисправной рулевой рейки на калине
17,18,20,21,22,24,27,29,30,31,33,34,36,39,40,40,41,44,45,47,47,51,55,55,56,64,67,70,72,77

Подсчитаем частоты. При подсчете возникает ситуация, в которой вариант (например 27) попадает на границу интервалов и может быть отнесен как к более раннему интервалу, так и к следующему за ним. В этом случае следует отнести его к интервалу, на верней границе которого он находится. Таким образом, 27 относится к первому интервалу. Результаты построения интервального вариационного ряда запишем в виде таблицы:

Распределение специалистов коммерческих банков

по величине заработной платы

Величина заработной платы, тыс. руб. Количество специалистов, чел.
17-27
27-37
37-47
47-57
57-67
67-77
Итого

Вариационный ряд можно изобразить графически. Дискретный вариационный ряд можно изобразить в виде полигона распределения. Полигон распределения строится в прямоугольной системе координат, при этом, на оси абсцисс откладывают значения вариант, а на оси ординат частоты или частости. Полученные точки соединяют отрезками, в результате чего получается ломаная линия, которая и будет полигоном распределения. Построим полигон распределения по данным примера 3.2.

Рис.3.1. Полигон распределения

Интервальный вариационный ряд можно изобразить в виде гистограммы распределения. Для интервального ряда с равнымиинтервалами на оси абсцисс откладывают отрезки равные длине интервала. На основании этих отрезков строят прямоугольники, высота которых пропорциональна частотам или частостям соответствующих интервалов. Нижеприведенная гистограмма распределения построена по данным примера 3.3.

Рис. 3.2. Гистограмма распределения

Для интервального ряда с неравными интервалами на оси ординат откладывают плотности распределения.

Дискретные и интервальные вариационные ряды можно представить в виде кумуляты и огивы. При построении кумуляты дискретного вариационного ряда на оси абсцисс откладывают значения признака (варианты), а по оси ординат – соответствующие им накопленные частоты (частости). Кумулята дискретного вариационного ряда представляет собой ступенчатую разрывную линию, имеющую конечные разрывы в точках, соответствующим значениям варианта. Для интервального вариационного ряда кумулята представляет собой ломанную, начинающуюся с точки, абсцисса которой равна началу первого интервала, а ордината – накопленной частоте (частости), равной нулю. Другие точки этой ломаной соответствуют концам интервалов. Огива строится аналогично кумуляте лишь с той разницей, что на оси абсцисс откладываются значения, соответствующие накопленным частотам (частостям), а на оси ординат – значения признака (варианты).

Источник

Сводка и группировка статистических данных

3.3. Ряды распределения: виды, правила построения, графическое изображение

Ряды распределения делятся на атрибутивные и вариационные, в зависимости от признака, положенного в основу группировки. Если признак качественный, то ряд распределения называется атрибутивным. Примером атрибутивного ряда является распределение предприятий и организаций по формам собственности (см. табл. 3.1).

Если признак, по которому строится ряд распределения, количественный, то ряд называется вариационным.

Вариационные ряды бывают дискретными и интервальными. У дискретных рядов (табл. 3.7) варианты выражены конкретными числами, чаще всего целыми.

Таблица 3.8. Распределение работников по времени работы в страховой компании
Время работы в компании, полных лет (варианты) Число работающих
Человек (частоты) в % к итогу (частости)
до года 15 11,6
1 17 13,2
2 19 14,7
3 26 20,2
4 10 7,8
5 18 13,9
6 24 18,6
Итого 129 100,0

Если признак принимает ограниченное число значений, обычно не больше 10, строят дискретные ряды распределения. Если вариант больше, то дискретный ряд теряет свою наглядность; в этом случае целесообразно использовать интервальную форму вариационного ряда. При непрерывной вариации признака, когда его значения в определенных пределах отличаются друг от друга на сколь угодно малую величину, также строят интервальный ряд распределения.

3.3.1. Построение дискретных вариационных рядов

Рассмотрим методику построения дискретных вариационных рядов на примере.

Пример 3.2. Имеются следующие данные о количественном составе 60 семей:

Таблица 3.9.
2 3 3 1 4 2 3 3 1 5 2 4 3 2 2 1 2 3 4 5
2 2 1 3 4 3 3 3 6 6 3 3 6 1 3 4 3 4 4 5
3 3 2 2 1 3 2 5 5 2 4 3 6 1 2 2 3 1 3 4

Для того чтобы получить представление о распределении семей по числу их членов, следует построить вариационный ряд. Поскольку признак принимает ограниченное число целых значений строим дискретный вариационный ряд. Для этого сначала рекомендуется выписать все значения признака (число членов в семье) в порядке возрастания (т.е. провести ранжирование статистических данных):

Таблица 3.10.
1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6
Таблица 3.11.
Число членов семьи (х) Число семей (y)
1 8
2 14
3 20
4 9
5 5
6 4
Итого 60

3.3.2. Построение интервальных вариационных рядов

Покажем методику построения интервальных вариационных рядов распределения на следующем примере.

Пример 3.3. В результате статистического наблюдения получены следующие данные о средней величине процентной ставки 50 коммерческих банков (%):

Таблица 3.12.
14,7 19,0 24,5 20,8 12,3 24,6 17,0 14,2 19,7 18,8
18,1 20,5 21,0 20,7 20,4 14,7 25,1 22,7 19,0 19,6
19,0 18,9 17,4 20,0 13,8 25,6 13,0 19,0 18,7 21,1
13,3 20,7 15,2 19,9 21,9 16,0 16,9 15,3 21,4 20,4
12,8 20,8 14,3 18,0 15,1 23,8 18,5 14,4 14,4 21,0
Читайте также:  Точное установление личности пользователя на основании различных признаков

Как видим, просматривать такой массив данных крайне неудобно, кроме того, не видно закономерностей изменения показателя. Построим интервальный ряд распределения.

Число интервалов на практике часто задается самим исследователем исходя из задач каждого конкретного наблюдения. Вместе с тем его можно вычислить и математически по формуле Стерджесса

Для нашего примера получим: n = 1 + 3,322lgN = 1 + 3,322lg50 = 6,6 » 7.

Для нашего примера

Интервалы вариационного ряда наглядны, если их границы имеют «круглые» значения, поэтому округлим величину интервала 1,9 до 2, а минимальное значение признака 12,3 до 12,0.

Интервалы, как правило, записывают таким образом, чтобы верхняя граница одного интервала являлась одновременно нижней границей следующего интервала. Так, для нашего примера получим: 12,0-14,0; 14,0-16,0; 16,0-18,0; 18,0-20,0; 20,0-22,0; 22,0-24,0; 24,0-26,0.

Подобная запись означает, что признак непрерывный. Если же варианты признака принимают строго определенные значения, например, только целые, но их количество слишком велико для построения дискретного ряда, то можно создать интервальный ряд, где нижняя граница интервала не будет совпадать с верхней границей следующего интервала (это будет означать, что признак дискретный). Например, в распределении работников предприятия по возрасту можно создать следующие интервальные группы лет: 18-25, 26-33, 34-41, 42-49, 50-57, 58-65, 66 и более.

Кроме того, в нашем примере мы могли бы сделать первый и последний интервалы открытыми, т.д. записать: до 14,0; 24,0 и выше.

Таблица 3.13. Ранжированный ряд величин процентной ставки коммерческих банков
Ставка банка % (варианты)
12,3 17,0 19,9 23,8
12,8 17,4 20,0 24,5
13,0 18,0 20,0 24,6
13,3 18,1 20,4 25,1
13,8 18,5 20,4 25,6
14,2 18,7 20,5
14,3 18,8 20,7
14,4 18,9 20,7
14,7 19,0 20,8
14,7 19,0 21,0
15,1 19,0 21,0
15,2 19,0 21,1
15,3 19,0 21,4
16,0 19,6 21,9
16,9 19,7 22,7

При подсчете частот может возникнуть ситуация, когда значение признака попадет на границу какого-либо интервала. В таком случае можно руководствоваться правилом: данная единица приписывается к тому интервалу, для которого ее значение является верхней границей. Так, значение 16,0 в нашем примере будет относиться ко второму интервалу.

Результаты группировки, полученные в нашем примере, оформим в таблице.

Таблица 3.14. Распределение коммерческих банков по величине кредитной ставки
Краткая ставка, % Количество банков, ед. (частоты) Накопленные частоты
12,0-14,0 5 5
14,0-16,0 9 14
16,0-18,0 4 18
18,0-20,0 15 33
20,0-22,0 11 44
22,0-24,0 2 46
24,0-26,0 4 50
Итого 50

В процессе группировки данных при построении вариационных рядов иногда используются неравные интервалы. Это относится к тем случаям, когда значения признака подчиняются правилу арифметической или геометрической прогрессии или когда применение формулы Стерджесса приводит к появлению «пустых» интервальных групп, не содержащих ни одной единицы наблюдения. Тогда границы интервалов задаются произвольно самим исследователем исходя из здравого смысла и целей обследования либо по формулам. Так, для данных, изменяющихся в арифметической прогрессии, величина интервалов вычисляется следующим образом:

Порядок расчетов границ неравных интервалов для данных, изменяющихся приблизительно в арифметической прогрессии, показан в табл. 3.15.

Для показателей, приблизительно изменяющихся в геометрической прогрессии, величину интервалов можно вычислить по формуле

Для графического изображения интервального ряда используют гистограмму, имеющую вид многоступенчатой фигуры, состоящей из прямоугольников. По оси абсцисс откладывают значения границ интервалов. Сами интервалы будут являться основаниями прямоугольников. Высота прямоугольников соответствует частоте или частости интервалов, которые откладываются по оси ординат.

По данным таблицы, приведенной в примере 3.3, построим гистограмму (рис. 3.2).

При неравных интервалах у гистограммы распределения высотами прямоугольников будут являться показатели плотности распределения, рассчитываемые как частное от деления частоты интервала на его величину.

Зависимость между значениями признака и накопленными частотами показывают особые графики, называемые кумулятой и огивой распределения.

В случае интервального ряда при построении кумуляты по оси абсцисс отмечают границы интервальных групп, накопленные частоты по оси ординат относят к верхним границам интервалов.

По данным таблицы, приведенной в примере 3.3, построим кумуляту распределения для интервального ряда (рис. 3.2).

Если у кумулятивной кривой поменять местами ось абсцисс с осью ординат, получим график, называемый огивой распределения (рис. 3.4).

Источник

Adblock
detector