2 признак подобия треугольников кратко

Признаки подобия треугольников

Признаки подобия треугольников позволяют доказать, что треугольники являются подобными, на основании 2-3 равенств (вместо 6 по определению).

В школьном курсе геометрии, как правило, изучают три признака подобия произвольных треугольников.

( подобие треугольников по двум углам)

Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

( подобие треугольников по двум сторонам и углу между ними)

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны.

( подобие треугольников по трём сторонам)

Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны.

Есть еще 4-й признак подобия треугольников —

( подобие треугольников по двум сторонам и наибольшему углу)

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а наибольший угол одного равен наибольшему углу другого, то такие треугольники подобны.

Доказав, что треугольники подобны, можно использовать свойства подобных треугольников.

Для доказательства подобия прямоугольных треугольников используют другие признаки. Их мы запишем в следующий раз.

Подобие правильных и подобие равнобедренных треугольников рассмотрим позже.

Признаки подобия треугольников широко используются при решении задач как в курсе планиметрии, так и в курсе стереометрии. Например, на основании подобия прямоугольных треугольников доказывается свойство биссектрисы треугольника.

Источник

Подобие треугольников: признаки и свойства

Подобие геометрических фигур

Две фигуры называют подобными, если они переводятся друг в друга путем преобразования подобия (расстояния между точками фигур изменяются одно и то же число раз).

Читайте также:  Сущностные признаки человека философия

Признаки подобия треугольников

Для доказательства признаков подобия нам понадобится следующее утверждение:

Лемма

Прямая, параллельная какой-нибудь стороне треугольника и пересекающая две другие стороны, отсекает от него треугольник, подобный исходному.

Первый признак: подобие по двум углам

Теорема. Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

Докажем данное утверждение.

Дано: \(\triangle ABC, \triangle A_1B_1C_1, \angle A=\angle A_1, \angle B=\angle B_1\)

Доказать: \(\triangle ABC\sim\triangle A_1B_1C_1\)

Второй признак: по двум пропорциональным сторонам и углу между ними

Теорема. Если две стороны одного треугольника соответственно пропорциональны двум сторонам другого треугольника и углы между этими сторонами равны, то такие треугольники подобны.

Третий признак: по трем пропорциональным сторонам

Теорема. Если три стороны одного треугольника пропорциональны трём сторонам другого, то такие треугольники подобны.

Примеры задач

Задача 1

Рассмотрим \(\triangle MBN\) и \(\triangle ABC\) :

Следовательно \(\triangle MBN\sim\triangle ABC\)

Можем сделать вывод о пропорциональности соответствующих сторон: \(\frac=\frac=\frac;\)

Задача 2

Прямая, параллельная основанию треугольника, отсекает от него треугольник и трапецию, площади которых относятся как 4:5 соответственно. Периметр маленького треугольника равен 20 см. Найти периметр данного треугольника.

Имеем соотношение: \(\frac>>=\frac45,\) значит \(\frac>>=\frac49\) (т.к. всего треугольник условно делится на \(4+5=9\) частей)

Рассмотрим \(\triangle DBE\) и \(\triangle ABC\) :

Следовательно, \(\triangle DBE\sim\triangle AB\) C по двум углам.

Источник

Инструменты пользователя

Инструменты сайта

Боковая панель

Геометрия:

Контакты

Признаки подобия треугольников

Теорема 1. Первый признак подобия треугольников. Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

По аналогичной схеме устанавливаются теоремы 2 и 3.

Теорема 2. Второй признак подобия треугольников. Если две стороны одного треугольника соответственно пропорциональны двум сторонам другого треугольника и углы между этими сторонами равны, то треугольники подобны.

Теорема 3. Третий признак подобия треугольников. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Читайте также:  Признаки что у мамы пропадает молоко что делать

Из теоремы 1 вытекает следующее.

Следствие 1. В подобных треугольниках сходственные стороны пропорциональны сходственным высотам, т. е. тем высотам, которые опущены на сходственные стороны.

Пример 1. Подобны ли два равносторонних треугольника?

Решение. Так как в равностороннем треугольнике каждый внутренний угол равен 60° (следствие 3), то два равносторонних треугольника подобны по первому признаку.

Решение. Пусть условию задачи отвечает рисунок 2.

Пример 4. Подобны ли треугольники ABC и А1В1С1, если АВ = 3 см, ВС = 5 см, АС = 7 см, А1В1 = 4,5 см, B1C1 = 7,5 см, A1C1 = 10,5 см?

Пример 5. Доказать, что медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины.

Итак, все три медианы треугольника ABC пересекаются в точке О и делятся ею в отношении 2:1, считая от вершины.

Пример 6. Проектор полностью освещает экран А высотой 90 см, расположенный на расстоянии 240 см. На каком наименьшем расстоянии в см. от проектора нужно расположить экран Б, высотой 150 см, так, что бы он был полностью освещён, если настройки проектора остаются неизменными.

Источник

2 признак подобия треугольников кратко

Письмо с инструкцией по восстановлению пароля
будет отправлено на вашу почту

Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого.

Число, равное отношению сходственных сторон подобных треугольников, называют коэффициентом подобия.

Для решения задач в геометрии часто используются три признака подобия треугольников, сформулируем второй из них.

Теорема: Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.

Докажем это утверждение.

∆ АВС и ∆ А1В1С1 подобны.

Рассмотрим ∆АВС2, у которого ∠1 = ∠А1, ∠2 = ∠В1.

∆ АВС2 и ∆ А1В1С1 подобны по первому признаку подобия треугольников, поэтому

Рассмотрим ∆АВС и ∆АВС2.

Так как у этих треугольников,

Читайте также:  Признаки попадания масла в тосол

во-первых, сторона АВ – общая,

можно сделать вывод, что ∆АВС = ∆АВС2 по двум сторонам и углу между ними.

Что и требовалось доказать.

Задача: Отрезки АD и ВС пересекаются в точке О так, что АО = 12 см, ВО = 10 см, СО = 30 см, DО = 4 см. Докажите, что треугольники АОС и DОВ подобны.

АD и ВС пересекаются в точке О.

треугольники АОС и DОВ подобны.

вертикальные углы), а значит, треугольники АОС и DОВ подобны по второму признаку подобия треугольников.

Источник

Подобные треугольники

Подобные треугольники — это треугольники, у которых все три угла равны, а все стороны одного треугольника в одно и то же число раз длиннее (или короче) сторон другого треугольника, то есть треугольники подобны если их углы равны, а сходственные стороны пропорциональны.

Сходственные стороны — это стороны двух треугольников, лежащие против равных углов.

Рассмотрим два треугольника ABC и A1B1C1, у которых ∠A = ∠A1, ∠B = ∠B1, ∠C = ∠C1:

Стороны AB и A1B1, BC и B1C1, CA и C1A1, лежащие напротив равных углов, называются сходственными сторонами. Следовательно, отношения сходственных сторон равны:

AB = BC = AC = k,
A1B1 B1C1 A1C1

k — это коэффициент подобия ( число, равное отношению сходственных сторон подобных треугольников). Если k = 1, то треугольники равны, то есть равенство треугольников – это частный случай подобия.

Подобие треугольников обозначается знаком

: ABC

A1B1C1.

Отношение площадей подобных треугольников равно квадрату коэффициента подобия. Если обозначить площади двух подобных треугольников буквами S и S1, то:

Первый признак подобия треугольников

Если два угла одного треугольника равны двум углам другого, то треугольники подобны.

то ABC

A1B1C1.

Второй признак подобия треугольников

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключённые между этими сторонами, равны, то треугольники подобны.

Если AB = AC , ∠A = ∠A1,
A1B1 A1C1
то ABC

A1B1C1.

Третий признак подобия треугольников

Если три стороны одного треугольника пропорциональны трём сходственным сторонам другого, то треугольники подобны.

Источник