1 признак равенства трапеции

Трапеции

Основные определения и свойства трапеций

Трапецией называют четырёхугольник, у которого две стороны параллельны, а две другие – не параллельны.

Параллельные стороны трапеции называют основаниями, а непараллельные стороны – боковыми сторонами трапеции

Точка пересечения диагоналей трапеции, точка пересечения продолжений боковых сторон и середины оснований лежат на одной прямой

Средняя линия трапеции параллельна основаниям трапеции и равна их полусумме

Тип утверждения Фигура Рисунок Формулировка
Определение Трапеция
Определение Диагонали
трапеции
Диагоналями трапеции называют отрезки, соединяющие противоположные вершины трапеции
Определение Высота
трапеции
Высотой трапеции называют перпендикуляр, опущенный из любой точки одного оснований трапеции на другое основание или его продолжение
Свойство Точка пересечения диагоналей
Определение Средняя линия
трапеции
Средней линией трапеции называют отрезок, соединяющий середины боковых сторон трапеции
Свойство
Свойство Биссектрисы углов при боковой стороне трапеции Биссектрисы углов при боковой стороне трапеции перпендикулярны

Трапецией называют четырёхугольник, у которого две стороны параллельны, а две другие – не параллельны.

Параллельные стороны трапеции называют основаниями, а непараллельные стороны – боковыми сторонами трапеции

Определение: диагонали трапеции Диагоналями трапеции называют отрезки, соединяющие противоположные вершины трапеции Определение: высота трапеции Высотой трапеции называют перпендикуляр, опущенный из любой точки одного оснований трапеции на другое основание или его продолжение Свойство: точка пересечения диагоналей

Точка пересечения диагоналей трапеции, точка пересечения продолжений боковых сторон и середины оснований лежат на одной прямой

Определение: средняя линия трапеции Средней линией трапеции называют отрезок, соединяющий середины боковых сторон трапеции Свойство: средняя линия трапеции

Средняя линия трапеции параллельна основаниям трапеции и равна их полусумме

Свойство: биссектрисы углов при боковой стороне трапеции Биссектрисы углов при боковой стороне трапеции перпендикулярны

Определение: Трапецией называют четырёхугольник, у которого две стороны параллельны, а две другие – не параллельны.

Параллельные стороны трапеции называют основаниями, а непараллельные стороны – боковыми сторонами трапеции

Диагонали трапеции

Определение: Диагоналями трапеции называют отрезки, соединяющие противоположные вершины трапеции Высота трапеции

Определение: Высотой трапеции называют перпендикуляр, опущенный из любой точки одного оснований трапеции на другое основание или его продолжение Точка пересечения диагоналей

Свойство: Точка пересечения диагоналей трапеции, точка пересечения продолжений боковых сторон и середины оснований лежат на одной прямой

Средняя линия трапеции

Определение: Средней линией трапеции называют отрезок, соединяющий середины боковых сторон трапеции

Свойство: Средняя линия трапеции параллельна основаниям трапеции и равна их полусумме

Биссектрисы углов при боковой стороне трапеции

Свойство: Биссектрисы углов при боковой стороне трапеции перпендикулярны

Подробнее со свойствами средней линии трапеции можно ознакомиться в разделе нашего справочника «Средняя линия трапеции».

В разделе нашего справочника «Типы четырёхугольников» представлена схема классификации трапеций. В том же разделе представлена таблица, в которой описаны всевозможные типы трапеций.

Свойства и признаки равнобедренных трапеций

Тип утверждения Фигура Рисунок Формулировка
Определение Равнобедренная трапеция Равнобедренной трапецией называют трапецию, у которой боковые стороны равны.
Свойство Равенство углов при основании Если трапеция является равнобедренной, то углы при каждом из её оснований равны.
Признак Если у трапеции углы при одном из оснований равны, то углы равны и при другом основании, а трапеция является равнобедренной.
Свойство Равенство диагоналей Если трапеция является равнобедренной, то её диагонали равны.
Признак Если у трапеции диагонали равны, то она является равнобедренной
Свойство Углы, которые диагонали образуют с основаниями Если трапеция является равнобедренной, то её диагонали образуют равные углы с каждым из её оснований.
Признак Если диагонали трапеции образуют равные углы с одним из оснований, то диагонали образуют равные углы и с другим основанием, а трапеция является равнобедренной.
Свойство Описанная окружность Если трапеция является равнобедренной, то около неё можно описать окружность.
Признак Если около трапеции можно описать окружность, то она является равнобедренной.
Свойство Высоты трапеции Основания высот равнобедренной трапеции, опущенных из вершин меньшего основания, делят большее основание на отрезки, один из которых равен меньшему основанию, а два других – полуразности оснований
Читайте также:  Половые признаки волнистых попугаев
Определение: Равнобедренная трапеция
Равнобедренной трапецией называют трапецию, у которой боковые стороны равны.
Свойство: равенство углов при основании
Если трапеция является равнобедренной, то углы при каждом из её оснований равны.
Признак: равенство углов при основании
Если у трапеции углы при одном из оснований равны, то углы равны и при другом основании, а трапеция является равнобедренной.
Свойство: равенство диагоналей
Если трапеция является равнобедренной, то её диагонали равны.
Признак: равенство диагоналей
Если у трапеции диагонали равны, то она является равнобедренной
Свойство: углы, которые диагонали образуют с основаниями
Если трапеция является равнобедренной, то её диагонали образуют равные углы с каждым из её оснований.
Признак: углы, которые диагонали образуют с основаниями
Если диагонали трапеции образуют равные углы с одним из оснований, то диагонали образуют равные углы и с другим основанием, а трапеция является равнобедренной.
Свойство: описанная окружность
Если трапеция является равнобедренной, то около неё можно описать окружность.
Признак: описанная окружность
Если около трапеции можно описать окружность, то она является равнобедренной.
Свойство: высоты трапеции
Основания высот равнобедренной трапеции, опущенных из вершин меньшего основания, делят большее основание на отрезки, один из которых равен меньшему основанию, а два других – полуразности оснований

Определение: Равнобедренной трапецией называют трапецию, у которой боковые стороны равны.

Равенство углов при основании

Свойство: Если трапеция является равнобедренной, то углы при каждом из её оснований равны.

Признак: Если у трапеции углы при одном из оснований равны, то углы равны и при другом основании, а трапеция является равнобедренной.

Равенство диагоналей

Свойство: Если трапеция является равнобедренной, то её диагонали равны.

Признак: Если у трапеции диагонали равны, то она является равнобедренной.

Углы, которые диагонали образуют с основаниями

Свойство: Если трапеция является равнобедренной, то её диагонали образуют равные углы с каждым из её оснований.

Признак: Если диагонали трапеции образуют равные углы с одним из оснований, то диагонали образуют равные углы и с другим основанием, а трапеция является равнобедренной.

Описанная окружность

Свойство: Если трапеция является равнобедренной, то около неё можно описать окружность.

Признак: Если около трапеции можно описать окружность, то она является равнобедренной.

Высоты трапеции

Свойство: Основания высот равнобедренной трапеции, опущенных из вершин меньшего основания, делят большее основание на отрезки, один из которых равен меньшему основанию, а два других – полуразности оснований

Источник

Трапеция

Определения

Трапеция – это выпуклый четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны.

Параллельные стороны трапеции называются её основаниями, а две другие стороны – боковыми сторонами.

Высота трапеции – это перпендикуляр, опущенный из любой точки одного основания к другому основанию.

Теоремы: свойства трапеции

2) Диагонали делят трапецию на четыре треугольника, два из которых подобны, а два другие – равновелики.

Доказательство

Определение

Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.

Теорема

Средняя линия трапеции параллельна основаниям и равна их полусумме.

Доказательство*
С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.

1) Докажем параллельность.

\[MN=MM’+M’N’+N’N=\dfrac12 AB’+B’C’+\dfrac12 C’D=\] \[=\dfrac12 \left(AB’+B’C’+BC+C’D\right)=\dfrac12\left(AD+BC\right)\]

Теорема: свойство произвольной трапеции

Середины оснований, точка пересечения диагоналей трапеции и точка пересечения продолжений боковых сторон лежат на одной прямой.

Доказательство*
С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.

2) Докажем, что точки \(N, O, M\) лежат на одной прямой.

\(\triangle BNO\sim \triangle DMO\) по двум углам ( \(\angle OBN=\angle ODM\) как накрест лежащие при \(BC\parallel AD\) и \(BD\) секущей; \(\angle BON=\angle DOM\) как вертикальные). Значит: \[\dfrac=\dfrac\]

Определения

Трапеция называется прямоугольной, если один из ее углов – прямой.

Читайте также:  Признаки рассорки в семье

Трапеция называется равнобедренной, если ее боковые стороны равны.

Теоремы: свойства равнобедренной трапеции

1) У равнобедренной трапеции углы при основании равны.

2) Диагонали равнобедренной трапеции равны.

3) Два треугольника, образованные диагоналями и основанием, являются равнобедренными.

Доказательство

2)

Теоремы: признаки равнобедренной трапеции

1) Если у трапеции углы при основании равны, то она равнобедренная.

2) Если у трапеции диагонали равны, то она равнобедренная.

Доказательство

Источник

Трапеция. Иллюстрированный гид (ЕГЭ – 2021)

Перед тобой лучший гид по трапеции! Только то, что нужно. Без воды.

Основные определения, формулы и свойства.

Помни о своей цели!

Тебе нужно подготовиться к ЕГЭ по математике так, чтобы поступить в ВУЗ мечты! Будь уверен!

ШПОРА О ТРАПЕЦИИ

Трапеция – четырёхугольник, у которого две стороны параллельны (они называются основания), а две другие – нет (это боковые стороны).

Средняя линия трапеции (\( \displaystyle MN\)) – отрезок, соединяющий середины боковых сторон:

\( \displaystyle AM=MB,\ \ CN=ND\).

Равнобедренная (равнобокая) трапеция – это трапеция, у которой боковые стороны равны:

Свойства равнобедренной трапеции:

Площадь трапеции равна полусумме оснований, умноженной на высоту: \( \displaystyle <_>=\frac<2>\cdot h\).

НАЧАЛЬНЫЙ УРОВЕНЬ

Что такое трапеция?

Трапеция – такой четырехугольник, у которого две стороны параллельны, а две другие – нет.

Параллельные стороны называются – основания, а непараллельные стороны называются боковые стороны.

Оказывается, трапеция (как и треугольник) бывает равнобедренная.

Если боковые стороны трапеции равны, то она называется равнобедренной ( или равнобокой).

И тут возникает вопрос: а могут ли у трапеции быть равными ОСНОВАНИЯ?

А вот и нет. Тогда это получится не трапеция, а параллелограмм, потому что две стороны окажутся параллельны и равны (вспоминаем признаки параллелограмма)

Автор этого учебника, Алексей Шевчук, проводит бесплатные вебинары по самым сложным задачам ЕГЭ по математике и информатике.

Регистрируйся здесь и приходи!

Свойства трапеции

Итак, что ты должен знать о свойствах трапеции.

Сумма углов при каждой боковой стороне трапеции равна 180°.
(у нас на рисунке \( \displaystyle \angle 1+\angle 2=180<>^\circ \) и \( \displaystyle \angle 3+\angle 4=180<>^\circ \))

Ну, конечно, просто потому, что основания – параллельны, а боковая сторона – секущая. Вот и получается, что \( \displaystyle \angle 1\) и \( \displaystyle \angle 2\) – внутренние односторонние углы при параллельных \( \displaystyle AD\) и \( \displaystyle BC\) и секущей \( \displaystyle AB\).

Поэтому \( \displaystyle \angle 1+\angle 2=180<>^\circ \).

И точно так же \( \displaystyle \angle 3\) и \( \displaystyle \angle 4\) – внутренние односторонние углы при тех же параллельных \( \displaystyle AD\) и \( \displaystyle BC\), но секущая теперь – \( \displaystyle CD\).

Видишь: главное, что играет роль – это параллельность оснований. Давай разберем еще некоторые свойства трапеции.

Как у всякого четырехугольника, у трапеции есть диагонали. Их две – посмотри на рисунки:

Источник

Что такое трапеция: свойства четырёхугольника, теоремы и формулы

В курсе геометрии за 8-й класс подразумевается изучение свойств и признаков выпуклых четырёхугольников. К ним относятся параллелограммы, частными случаями которых являются квадраты, прямоугольники и ромбы, и трапеции. И если решение задач на различные вариации параллелограмма чаще всего не вызывает сильных затруднений, то разобраться, какой четырёхугольник называется трапецией, несколько сложнее.

Определение и виды

В отличие от других четырёхугольников, изучаемых в школьной программе, трапецией принято называть такую фигуру, две противоположные стороны которой параллельны друг другу, а две другие — нет. Существует и другое определение: это четырёхугольник с парой сторон, которые не равны между собой и параллельны.

Различные виды указаны на рисунке ниже.

На изображении под номером 1 изображена произвольная трапеция. Номером 2 обозначен частный случай — прямоугольная трапеция, одна из сторон которой перпендикулярна её основаниям. Последняя фигура — тоже особый случай: это равнобедренная (равнобокая) трапеция, т. е. четырёхугольник с равными боковыми сторонами.

Важнейшие свойства и формулы

Для описания свойств четырёхугольника принято выделять определённые элементы. В качестве примера можно рассмотреть произвольную трапецию ABCD.

В её состав входят:

Основные свойства элементов

Чтобы решить задачи по геометрии или доказать какие-либо утверждения, наиболее часто используют свойства, которые связывают различные элементы четырёхугольника. Они формулируются следующим образом:

Кроме того, часто полезно знать и применять следующие утверждения:

Вычисление периметра и площади

Периметр рассчитывается как сумма длин всех четырёх сторон (аналогично любой другой геометрической фигуре):

Есть несколько способов, как можно рассчитать площадь трапеции по формуле. Следует выбрать из них наиболее подходящий вариант, опираясь на то, какие данные известны по условию задачи.

Вписанная и описанная окружность

Окружность возможно описать около трапеции только в том случае, когда боковые стороны четырёхугольника равны.

Чтобы вычислить радиус описанной окружности, необходимо знать длины диагонали, боковой стороны и большего основания. Величина p, используемая в формуле, рассчитывается как полусумма всех вышеперечисленных элементов: p = (a + c + d)/2.

Для вписанной окружности условие будет следующим: сумма оснований должна совпадать с суммой боковых сторон фигуры. Радиус её можно найти через высоту, и он будет равен r = h/2.

Частные случаи

Рассмотрим часто встречаемый случай — равнобокую (равностороннюю) трапецию. Её признаки — равенство боковых сторон или равенство противолежащих углов. К ней применимы все утверждения, которые характерны для произвольной трапеции. Другие свойства равнобедренной трапеции:

Прямоугольная трапеция встречается в задачах не так часто. Её признаки — наличие двух смежных углов, равных 90 градусов, и наличие боковой стороны, перпендикулярной основаниям. Высота в таком четырёхугольнике одновременно является одной из его сторон.

Все рассмотренные свойства и формулы обычно используются для решения планиметрических задач. Однако также их приходится применять в некоторых задачах из курса стереометрии, например, при определении площади поверхности усечённой пирамиды, внешне напоминающей объёмную трапецию.

Источник

Что такое трапеция: определение, виды, свойства

В данной публикации мы рассмотрим определение, виды и свойства (касательно диагоналей, углов, средней линии, точки пересечения боковых сторон и т.д.) одной из основных геометрических фигур – трапеции.

Определение трапеции

Трапеция – это четырехугольник, две стороны которого параллельны, а остальные две – нет.

Параллельные стороны называются основаниями трапеции (AD и BC), две другие стороны – боковыми (AB и CD).

Угол при основании трапеции – внутренний угол трапеции, образованный ее основанием и боковой стороной, например, α и β.

Трапеция записывается путем перечисления его вершин, чаще всего, это ABCD. А основаниям обозначаются маленькими латинскими буквами, например, a и b.

Средняя линия трапеции (MN) – отрезок, соединяющий середины ее боковых сторон.

Высота трапеции (h или BK) – это перпендикуляр, проведенный от одного основания к другому.

Виды трапеций

Равнобедренная трапеция

Трапеция, боковые стороны которой равны, называется равнобедренной (или равнобокой).

Прямоугольная трапеция

Трапеция, у которой оба угла при одной из ее боковых сторон прямые, называется прямоугольной.

Разносторонняя трапеция

Трапеция является разносторонней, если ее боковые стороны не равны, и ни один из углов при основании не является прямым.

Свойства трапеции

Перечисленные ниже свойства применимы к любым видам трапеций. Свойства равнобедренной и прямоугольной трапеций представлены на нашем сайте в отдельных публикациях.

Свойство 1

Сумма углов трапеции, прилежащих к одной и той же боковой стороне, равна 180°.

Свойство 2

Средняя линия трапеции параллельна ее основаниям и равняется половине их суммы.

Свойство 3

Отрезок, который соединяет середины диагоналей трапеции, лежит на ее средней линии и равняется половине разности оснований.

Свойство 4

Точки пересечения диагоналей трапеции, продолжений ее боковых сторон и середин оснований лежат на одной прямой.

Если сумма углов при одном основании равняется 90° (т.е. ∠DAB + ∠ADC = 90°), значит продолжения боковых сторон трапеции пересекаются под прямым углом, а отрезок, который соединяет середины оснований (ML) равняется половине их разности.

Свойство 5

Диагонали трапеции делят ее на 4 треугольника, два из которых (при основаниях) подобны, а два других (при боковых сторонах) равны по площади.

Свойство 6

Отрезок, проходящий через точку пересечения диагоналей трапеции параллельно ее основаниям, можно выразить через длины оснований:

Свойство 7

Биссектрисы углов трапеции при одинаковой боковой стороне взаимно перпендикулярны.

Свойство 8

В трапецию можно вписать окружность только в том случае, если сумма длин ее оснований равна сумме длин ее боковых сторон.

Радиус вписанной в трапецию окружности равен половине ее высоты: R = h/2.

Источник